MB86R01 LSI Product Specifications

October, 2010 The 1.5 edition

Preface

Objectives and Intended Reader

Thank you very much for your continued special support for Fujitsu semiconductor products.

MB86R01 is LSI product for the graphics applications.

This manual describes functions and operations of MB86R01 for engineers who design products using MB86R01. Read through this manual before use.

Trademarks

ARM is a registered trademark of ARM Limited in UK, USA and Taiwan. ARM is a trademark of ARM Limited in Japan and Korea. ARM Powered logo is a registered trademark of ARM Limited in Japan, UK, USA, and Taiwan. ARM Powered logo is a trademark of ARM Limited in Korea. ARM926EJ-S and ETM9 are trademarks of ARM Limited.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

License

Please acquire license of MediaLB from SMSC.

Hardware Related Manuals

MB86R01 hardware related manuals are shown below. Refer them as the situation demands.

- MB86R01 LSI product specification graphics display controller (GDC)
- MB86R01 LSI product specification SD memory controller (Note)
- MB86R01 Data sheet
- MB86R01 Errata sheet

Note) This specification document is for SD card licensee.

The contents of this document are subject to change without notice. Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

All rights reserved, Copyright FUJITSU SEMICONDUCTOR LIMITED 2007-2010

Revision History

Date	Ver.	Contents
2007/06/06	1.0	Newly issued
2007/09/14	1.1	Whole contents: modified name and abbreviation of module
		• SD memory interface \rightarrow SD memory controller
		• SD i/f \rightarrow SDMC
		• HDMAC \rightarrow DMAC
		• USB2.0 HOST FJREG \rightarrow USB2.0 Host PHYCNT
		• USB2.0 HOST ohci \rightarrow USB1.1 OHCI Host
		 USB2.0 HOST ehci → USB2.0 EHCI Host USB2.0 FUNC/DMAC → USB2.0 Function DMAC
		 • OSB2.0 FORC/DMAC > OSB2.0 Function DMAC • DMA module → DMAC
		1.6.15. DDR2 related pin
		Modified description of *5 and *6
		1.6.22. ETM related pin
		Modified description in the table
		3.2. Register access
		• Added description of SDMC in the table
		3.3. Register map
		• Revised description of DRCF register
		Revised description of PWM0BCR register
		Revised description of IDEDMACTL
		Added USB2.0 OHCI Host
		4.4. ARM926EJ-S and ETM setting
		Revised ETMCSSingle to ETM9CS Single
		5.4.10. AHB(B) bus clock gate control register (CRHB)
		Revised description of HBGATE[15:0] bit
		5.5.1. Generation of reset
		Revised description of factor
		5.5.2. Clock generation
		 Revised figure 5-3 Revised description of frequency change
		 Revised description of nequency change Revised figure 5-6
		 Revised light 5-6 Revised description of stop mode
		7.3.2. Extension IRQ interrupt vector of IRC0/IRC1
		Revised exception factor name of the table
		7.4.1. Register list
		Revised description column of table 7-5
		7.5.2. Initialization
		• Revised description of step 7
		7.5.5. Resume from Stop and standby modes
		Revised description
		8.5.1. SRAM/Flash mode register 0/2/4 (MCFMODE0/2/4)
		• Revised description of "Bit 6: RDY"
		8.5.2. SRAM/Flash timing register 0/2/4 (MCFTIM0/2/4)
		• Revised description of "Bit 23 - 20: WADC"
		8.5.3. SRAM/Flash area register 0/2/4 (MCFAREA0/2/4)
		• Added table to "Bit 7-0: ADDR"
		8.7. Example of access waveform
		• Revised figure 8-2
<u> </u>		• Revised figure 8-3

FUĴITSU

Date	Ver.	Contents
2007/09/14	1.1	8.8.2. Low-speed device interface function
		Revised description
		8.8.3. Endian and byte lane to each access
		• Revised table 8-2
		9.4.13. DRAM ODT SETTING register (DROS)
		• Revised bit 1's initial value
		9.4.17. ODT auto bias adjust register (DROABA)
		• Revised description of IAVSET bit
		9.4.18. ODT bias select register (DROBS)
		• Revised description of AUTO bit
		9.5.2. DRAM initialization procedure
		• Revised flow
		9.5.2.1. SDRAM initialization procedure
		• Revised flow
		9.5.2.2. ODT adjustment procedure
		• Revised flow
		9.5.5. DRAM CTRL ADD register (DRCA)
		• Revised description of bit 3-0
		11.7. Example of DMAC setting
		Revised title
		11.7.1. DMA start in Single channel
		Revised flow
		11.7.3. Block/Transfer count resetting
		Deleted section
		14.7.6. PWMx status register (PWMxCR)
		Revised bit field No. of "(Reserved)"
		• Revised description of bit field No. 2-1
		15.8.4. ADCx clock selection register (ADCxCKSEL)
		• Revised description of CKSEL[2:0] bit
		17.6.4. I2SxCNTREG register
		• Revised description of FSPH bit
		17.6.11. I2SxSTATUS register
		• Revised description of EOPI
		17.7.2. Transfer start, stop, and malfunction
		• Revised description of "transmission only mode"
		19.7.5. Arbitration
		• Revised figure
		21. CAN interface (CAN)
		• Added 21.1., outline
		• Added 21.2., block diagram
		• Added 21.3., register
		23. USB host controller
		Revised description
		23.4. Block diagram
		• Added figure
		23.5.4. Capability parameter register (HCCPARAMS)
		Revised description
		23.5.6. USB status register (USBSTS)
		Revised description of HostSystem-Error bit
		23.5.22. Command/Status register (HcCommandStatus)
		• Revised description of BLF bit
		• Revised description of CLF bit

2007/09/14 1.1 23.5.23. Interrupt status register (HcInterruptStatus) • Revised description of UE bit 23.5.31. Bulk current ED register (HcBulkCurrentED) • Revised description of BCED bit 23.5.38. Root hub descriptor A register (HcBulbescriptorA) • Revised description of bit field No. 9 and 8 23.5.39. Root hub descriptor B register (HcRhDescriptorB) • Revised description of DR bit 23.5.41. Root hub port status/Control register 1 (HcRhPortStatus[1]) • Added description of bit field No. 3-0 23.5.43. PHY mode setting 1 register (PHYModeSetting1) • Added 24.1., outline • Added 24.1., outline • Added 24.2., feature • Added 24.4., block diagram 24.4. Register • Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) • Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) • Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) • Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS3) • Added bit description 24.4.16. USB function Endpoint 2 Rx size register (UFEpRS3) • Added bit description
Revised description of UE bit 23.5.31. Bulk current ED register (HcBulkCurrentED) Revised description of BCED bit 23.5.38. Root hub descriptor A register (HcRhDescriptorA) Revised description of bit field No. 9 and 8 23.5.39. Root hub description of DR bit 23.5.41. Root hub port status/Control register 1 (HcRhPortStatus[1]) Added description of bit field No. 3-0 23.5.43. PHY mode setting 1 register (PHYModeSetting1) Added description of bit field No. 24 and 25 24. USB function controller Added 24.1., outline Added 24.2., feature Added 24.2., feature Revised the table 24.4.1. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 R xize register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.16. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 23.5.31. Bulk current ED register (HcBulkCurrentED) Revised description of BCED bit 23.5.38. Root hub descriptor A register (HcRhDescriptorA) Revised description of bit field No. 9 and 8 23.5.39. Root hub descriptor B register (HcRhDescriptorB) Revised description of DR bit 23.5.41. Root hub oper status/Control register 1 (HcRhPortStatus[1]) Added description of bit field No. 3-0 23.5.43. PHY mode setting 1 register (PHYModeSetting1) Added description of bit field No. 24 and 25 24. USB function controller Added 24.1., outline Added 24.4., block diagram 24.4.4. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.15. USB function Endpoint 1 Rx size register (UFEpRS2) Added bit description
 Revised description of BCED bit 23.5.38. Root hub descriptor A register (HcRhDescriptorA) Revised description of bit field No. 9 and 8 23.5.39. Root hub descriptor B register (HcRhDescriptorB) Revised description of PPCM bit Revised description of DR bit 23.5.41. Root hub port status/Control register 1 (HcRhPortStatus[1]) Added description of bit field No. 3-0 23.5.43. PHY mode setting 1 register (PHYModeSetting1) Added description of bit field No. 24 and 25 24. USB function controller Added 24.1., outline Added 24.2., feature Added 24.2., feature Added 24.4., block diagram 24.4. Register Revised the table 24.4.13. USB function Endpoint 0 Rx size register (UFDvS) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.16. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description
 23.5.38. Root hub descriptor A register (HcRhDescriptorA) Revised description of bit field No. 9 and 8 23.5.39. Root hub descriptor B register (HcRhDescriptorB) Revised description of DR bit 23.5.41. Root hub port status/Control register 1 (HcRhPortStatus[1]) Added description of bit field No. 3-0 23.5.43. PHY mode setting 1 register (PHYModeSetting1) Added description of bit field No. 24 and 25 24. USB function controller Added 24.1., outline Added 24.2., feature Added 24.4., block diagram 24.4. USB function device status register (UFDvS) Revised the table 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description
Revised description of bit field No. 9 and 8 23.5.39. Root hub descriptor B register (HcRhDescriptorB) Revised description of PPCM bit Revised description of DR bit 23.5.41. Root hub port status/Control register 1 (HcRhPortStatus[1]) Added description of bit field No. 3-0 23.5.43. PHY mode setting 1 register (PHYModeSetting1) Added description of bit field No. 24 and 25 24. USB function controller Added 24.1., outline Added 24.2., feature Added 24.4., block diagram 24.4. Register Revised the table 24.4.1. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 23.5.39. Root hub descriptor B register (HcRhDescriptorB) Revised description of PPCM bit Revised description of DR bit 23.5.41. Root hub port status/Control register 1 (HcRhPortStatus[1]) Added description of bit field No. 3-0 23.5.43. PHY mode setting 1 register (PHYModeSetting1) Added description of bit field No. 24 and 25 24. USB function controller Added 24.1., outline Added 24.4., block diagram 24.4. Register Revised the table 24.4.1 USB function endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.15. USB function Endpoint 1 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 Revised description of PPCM bit Revised description of DR bit 23.5.41. Root hub port status/Control register 1 (HcRhPortStatus[1]) Added description of bit field No. 3-0 23.5.43. PHY mode setting 1 register (PHYModeSetting1) Added description of bit field No. 24 and 25 24. USB function controller Added 24.1., outline Added 24.2., feature Added 24.4., block diagram 24.4. Register Revised the table 24.4.1.3. USB function for R size register (UFDvS) Revised bit 8's initial value 24.4.14. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.15. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.16. USB function Endpoint 2 Rx size register (UFEpRS3) Added bit description
 Revised description of DR bit 23.5.41. Root hub port status/Control register 1 (HcRhPortStatus[1]) Added description of bit field No. 3-0 23.5.43. PHY mode setting 1 register (PHYModeSetting1) Added description of bit field No. 24 and 25 24. USB function controller Added 24.1., outline Added 24.2., feature Added 24.4., block diagram 24.4. Register Revised the table 24.4.13. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS3) Added bit description
 23.5.41. Root hub port status/Control register 1 (HcRhPortStatus[1]) Added description of bit field No. 3-0 23.5.43. PHY mode setting 1 register (PHYModeSetting1) Added description of bit field No. 24 and 25 24. USB function controller Added 24.1., outline Added 24.2., feature Added 24.4., block diagram 24.4. Register Revised the table 24.4.4. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description
 Added description of bit field No. 3-0 23.5.43. PHY mode setting 1 register (PHYModeSetting1) Added description of bit field No. 24 and 25 24. USB function controller Added 24.1., outline Added 24.2., feature Added 24.4., block diagram 24.4. Register Revised the table 24.4.4. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 23.5.43. PHY mode setting 1 register (PHYModeSetting1) Added description of bit field No. 24 and 25 24. USB function controller Added 24.1., outline Added 24.2., feature Added 24.4., block diagram 24.4. Register Revised the table 24.4.4. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 Added description of bit field No. 24 and 25 24. USB function controller Added 24.1., outline Added 24.2., feature Added 24.4., block diagram 24.4. Register Revised the table 24.4.4. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 24. USB function controller Added 24.1., outline Added 24.2., feature Added 24.4., block diagram 24.4. Register Revised the table 24.4.4. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 Added 24.1., outline Added 24.2., feature Added 24.4., block diagram 24.4. Register Revised the table 24.4.4. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 Added 24.2., feature Added 24.4., block diagram 24.4. Register Revised the table 24.4.4. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 Added 24.4., block diagram 24.4. Register Revised the table 24.4.4. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 24.4. Register Revised the table 24.4.4. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 Revised the table 24.4.4. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 24.4.4. USB function device status register (UFDvS) Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 Revised bit 8's initial value 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 24.4.13. USB function Endpoint 0 Rx size register (UFEpRS0) Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 Added bit description 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 24.4.14. USB function Endpoint 1 Rx size register (UFEpRS1) Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 Added bit description 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 24.4.15. USB function Endpoint 2 Rx size register (UFEpRS2) Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
 Added bit description 24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3) Added bit description
24.4.16. USB function Endpoint 3 Rx size register (UFEpRS3)Added bit description
Added bit description
1
24.4.17. UFCusCnt registerAdded this section
24.4.18. UFCALB register
Added this section
24.4.19. UFEpLpBk register
• Added this section
24.4.20. UFIntfAltNum register
Added this section
24.4.21. USB function Endpoint 0 control register (UFEpC0)
 Revised description of Init0o bit
Revised description of Init0i bit
24.4.23. USB function Endpoint 1 control register (UFEpC1)
Revised description of IniFifo1 bit
24.4.25. USB function Endpoint 2 control register (UFEpC2)
Revised description of IniFifo2 bit
24.4.27. USB function Endpoint 3 control register (UFEpC3)
Revised description of IniFifo3 bit
24.4.37. USB function Endpoint 1 DMA control/status register (UFEpDC1)
• Revised bit 8 to "reserved"
Revised description of EpNF1 bit
Revised description of EpNE1 bit
• Revised description of EpDF1 bit
24.4.38. USB function Endpoint 2 DMA control/status register (UFEpDC2)
• Revised bit 8 to "reserved"
Revised description of EpNE2 bit
Revised description of EpDF2 bit

FUĴĨTSU

Date	Ver.	Contents
2007/09/14	1.1	24.4.41. USB function Endpoint 1 DMA size register (UFEpDS1)
		• Revised description of EpDS1 bit
		24.4.42. USB function Endpoint 2 DMA size register (UFEpDS2)
		Revised description of EpDS2 bit
		24.5. Operation
		Added this section
		25.6.36. DMA control register (IDEDMACTL)
		Revised bit 7-1 to "reserved"
		25.6.37. DMA transfer control register (IDEDMATC)
		• Revised abbreviation of register (IDEDMACTL \rightarrow IDEDMATC)
		Revised description of TYPE bit
		 26.5.1. Register list Revised table 26-1
		 26.5.4. Interrupt status register (CIST) Revised description of INT31/28/27/26/24/5 bit
		26.5.12. Multiplex mode setting register (CMUX_MD)
		Revised description of MPX_MODE_2
		26.5.16. Byte swap switchover register (CBSC)
		Revised field name of bit 20-22
		26.5.18. Softreset register 0 for macro (CMSR0)
		• Revised field name of bit 16
		• Revised description of SRST0_3 bit
		26.5.19. Softreset register 1 for macro (CMSR1)
		• Revised field name of bit 23-19 and 4
2007/11/12	1.2	1.3 Function list
		Revised contents of the list
		1.5. Pin assignment
		• Revised figures in 1-8/1-9 pages
		Added "top view" statement
		1.6.1. Pin multiplex
		 Revised description of note Added mode setting description to pin multiplex group #1 ~ #5
		 Revised table of pin multiplex group #2 and #4
		1.6.6. USB 2.0 Host/Function related pin
		Revised description of USB_EXT12K pin
		1.6.7. External interrupt controller related pin
		• Revised title
		1.6.14. A/D converter related pin
		Revised pin name: $AD_AVD0 \rightarrow AD_AVD$, $AD_AVS1 \rightarrow AD_AVS$
		1.6.26. Unused pin
		Added this section
		1.6.27. Unused pin with pin multiplex function in the duplex case
		Added this section
		5.5.2. Clock generation
		• Revised figure 5-3 and table 5-4
		6.4. Supply clock
		Added this section
		8.4. Supply clock
		Added this section
		8.6.1. SRAM/Flash mode register 0/2/4
		Revised description of RDY, PAGE, and WDTH bit
		8.6.2. SRAM/Flash timing register 0/2/4
		• Revised description of WWEC, WADC, WACC, RIDLC, RADC, and RACC bit

Date	Ver.	Contents
2007/11/12	1.2	8.6.3. SRAM/Flash area register 0/2/4
		• Revised description of ADDR bit
		8.8. Example of access waveform
		 Revised figure of word read access to 16 bit width SRAM/NOR Flash
		 Revised figure of word write access to 16 bit width SRAM/NOR Flash
		• Revised figure 8-2 and 8-3 of read/write to low speed device
		• Added figure 8-4 and 8-5 of read/write to low speed device
		Revised figure of page read of 16 bit NOR Flash
		8.9.2. Low-speed device interface function
		Revised description
		9.4. Supply clock
		Added this section
		9.5.8. DRAM CTRL SET TIME2 register
		Revised description of TRFC bit
		10.4. Supply clock
		Added this section
		11.5. Supply clock
		Added this section
		12.3. Supply clock
		Added this section
		13.4. Supply clock
		Added this section
		17.6.10. I2SXINTCNT register
		Revised description of RXFDM bit
		Revised description of RXFIM bit
		17.6.11. I2SxSTATUS register
		Revised description of RXOVR bit
		19.6.8. Expansion CS registerDeleted description of bit 7 and 6
		 Revised description of note
		20.4. Supply clock
		Added this section
		21.3. Supply clock
		Added this section
		22. MediaLB interface
		Revised description
		22.3. Supply clock
		Added this section
		23.3. Feature
		Revised function description of companion controller
		23.5. Supply clock
		Added this section
		24.4. Supply clock
		Added this section
		24.5.17. UFCusCnt register
		Revised description of bit 2-1
		24.6.19. Pull-Up resistor
		Revised description
		25.6.17. IDE command register
		Revised description of DMA interface enable bit
		25.6.26. UDMA command resister
		Revised description and bit name of bit 3
		 Revised description and of name of oil 5 Revised description of UDMA enable bit
	I	····· ···

FUĴITSU

Date	Ver.	Contents
2007/11/12	1.2	25.6.28. RxFIFO rest count compare value
		Revised description
		25.6.36. DMA control register
		• Revised description of DMA start bit
		26.5.2. CHIP ID register (CCID)
		• Revised description of bit YEAR[15:0] bit
		27.4. Supply clock
		Added this section
2008/02/07	1.3	1.5. Pin assignment
		• Revised figure and table
		1.6.4. IDE66 related pin
		• Revised type
		• Revised status pin after reset
		1.6.5. SD memory controller related pin
		• Unified SD_DAT[0] and SD_DAT[3:1]
		1.6.6. USB 2.0 Host/Function related pin
		• Revised USB_AVDB to USB_AVSB
		1.6.9. CAN related pin
		• Revised type
		1.6.10. I2S related pin
		• Revised type
		• Revised status pin after reset
		1.6.12. SPI related pin
		• Revised type
		1.6.13. PWM related pin
		• Revised type
		Added comment
		1.6.15. DDR2 related pin
		• Revised I/O of OCD and ODT to I
		• Revised resistance value of *2
		1.6.17. Video capture related pin
		• Revised type
		Added comment
		1.6.20. ICE related pin
		Revised status pin after reset of XSRST
		1.6.22. ETM related pin
		Revised pin name in description column of TRACECLK
		1.6.24. MediaLB related pin
		• Revised pin name
		Revised type
		1.6.26. Unused pin
		Revised process
		Deleted BIGEND
		• Revised pin name of B17, B16, C17, C16, and D16
		1.6.27. Unused pin with pin multiplex function in the duplex case
		Revised process
		9.5.10. DRAM CTRL FIFO register (DRCF)
		Revised bit name
		• Revised initial value of bit 15
		• Added description of bit 15 to the list

Date	Ver.	Contents
2008/02/07	1.3	9.5.17. ODT auto bias adjust register (DROABA)
		• Deleted and merged ODTAUTO (bit 1) to ODTBIAS
		• Revised NDRV/PDRV to ODT of the I/O cell
		Revised remark description
		• Revised description of bit 7
		9.5.18. ODT bias select register (DROBS)
		• Revised description of bit 0
		11.8.1. DMA start in single channel
		• Revised title of the figure
		Revised figure
		Added description of note
		Added example of demand transfer by software request (with DMAC ch0)
		11.8.2. DMA start in all channels (in demand transfer mode)
		Revised title
		Revised description
		12.4. Specification
		Revised description
		13.5.3. Data direction register 0-2 (GPDDR2-0)
		• Revised initial value of bit 7 ~ 0
		18.6.9. Line status register (URTxLSR)
		Revised description of bit 1
		18.7.2. Example of transfer procedure
		Revised description
		23.6.40. Root hub status register (HcRhStatus)
		• Revised description of bit 1
		26.5.2. CHIP ID register (CCID)
		• Revised description of bit 7-0
		26.5.4. Interrupt status register (CIST)
		• Revised name of bit 25
		26.5.11. AXI polarity setting register (CAXI_PS)
		• Revised initial value of bit 18, 13, 12, 9, and 4
		• Revised description of bit 18-16
		26.5.12. Multiplex mode setting register (CMUX_MD)
		• Revised initial value of bit 5, 4, and 2 ~ 0
		26.5.17. DDR2 controller reset control register (CDCRC)
		• Revised name of bit 1 from IRRESET to IUSRRST
		• Exchanged description in function column of bit 1 and 0
2008/06/12	1.4	3.3 Register map
		Revised description of external bus interface
		8.2. Spec limitation
		Added this section
		8.7.1. SRAM/Flash mode register 0-7 (MCFAREA0-7)
		Revised Title
		Revised description in register address column
		8.7.2. SRAM/Flash timing register 0-7 (MCFTIM0-7)
		Revised Title
		Revised description in register address column
		8.7.3. SRAM/Flash area register 0-7 (MCFAREA0-7)
		• Revised title
		Revised description in register column
		Revised description in bit 22-16
		9.6.2.3. ODT setting procedure
		Revised description
		• Revised figure 9-6

Date	Ver.	Contents
2008/06/12	1.4	11.6.3. DMA configuration A register (DMACAx)
		• Revised from 16 to 16 (Fh) in bit 19-16
		• Revised 65536 to 65536 (FFFFh) in bit 15-0
		17.2. Feature
		Revised description
		17.7.3.1. 1 sub frame construction
		• Revised figure 17-2
		17.7.3.2. 2 sub frame construction
		• Revised figure 17-3
		18.3. Block diagram
		• Revised figure 18-1
		22.4. Register
		Revised description
		23.6.3. Structural Parameter Register (HCSPARAMS)
		• Revised initial value of bit 11-8 and 3-0
		• Revised description of bit 11-8 and 3-0
		23.6.19. UTMI Control Status Register (INSNREG05)
		• Revised initial value of bit 12
		23.6.23. Interrupt Status Register (HcInterruptStatus)
		Added note description
		• Deleted description of bit 6
		23.6.28. Control Head ED Register (HcControlHeadED)
		• Revised bit field number
		23.6.38. Root Hub Descriptor A Register (HcRhDescriptorA)
		• Revised initial value of bit 7-0
		• Revised description of bit 7-0
		23.6.39. Root Hub Descriptor B Register (HcRhDescriptorB)
		• Revised initial value of bit 31-16
		Revised description of bit 31-16
		23.6.43. PHY Mode Setting 1 Register (PHYModeSetting1)
		• Revised initial value of bit 25 and 24
		26.5.19. Software reset register 1 for macro (CMSR1)
		• Revised description of bit 26
2010/10/15	1.5	1.6.1. Pin Multiplex
		Revised description of note
		4.4. ARM926EJ-S and ETM setting
		Revised URL of ARM926EJ-S-related material
		5.4.2. PLL control register (CRPR)
		• Revised description of bit 4-0
		5.4.3. Watchdog timer control register (CRWR)
		• Revised description of bit 7
		Revised description of bit 4
		7.6.4. Interrupt level mask register (IR0ILM/IR1ILM)
		Revised description of bit 3-0
		7.7.1. Outline
		• Revised figure 7-2
		8.7.2. SRAM/Flash timing register 0-7 (MCFTIM0-7)
		Revised description of bit 19-16
		8.8. Connection example
		• Added figure 8-6
		8.9. Example of access waveform
		• Revised figure 8-8
		• Revised figure 8-10
		• Revised figure 8-12

Date	Ver.	Contents
2010/10/15	1.5	9.5.1. Register list
		• Revised table 9-2
		9.5.7. DRAM CTRL SET TIME1 Register (DRCST1)
		• Revised description of bit 10-8
		• Revised description of bit 3-0
		9.5.15. IO buffer setting OCD (DRIBSOCD) (*)
		• Deleted section
		*) It is a section number and a title of version 1.4
		9.5.16. IO buffer setting OCD2 (DRIBSOCD2) (*)
		• Deleted section
		*) It is a section number and a title of version 1.4
		 9.5.19. IO monitor register 1 (DRIMR1) ~ 9.5.22. IO monitor register 4 (DRIMR4) (*) Deleted section
		Deleted section *) It is a section number and a title of version 1.4
		9.6.1. DRAM initialization sequence
		Revised figure 9-2
		9.6.2.1. SDRAM initialization procedure
		Revised figure 9-4
		9.6.2.2. OCD adjustment procedure (*)
		Deleted section
		*) It is a section number and a title of version 1.4
		9.6.2.2. ODT setting procedure
		Revised figure 9-6
		13.5.1. Register list
		• Revised table 13-1
		13.5.3. Data direction register 0-2 (GPDDR2-0)
		• Revised description of bit 7-0 (DDR0_7-0)
		• Revised description of bit 7-0 (DDR1_15-8)
		• Revised description of bit 7-0 (DDR2_23-16)
		13.6.1. Direction control
		Revised description
		17.6.2. I2SxRXFDAT register
		Revised description
		17.6.3. I2SxTXFDAT register
		Revised description
		17.6.11. I2SxSTATUS register
		• Revised description of bit 31
		• Revised description of bit 30
		• Revised bit 13-8 to bit 15-8 (TXNUM[5:0] \rightarrow TXNUM[7:0])
		• Revised description of bit 15-8
		• Revised bit 5-0 to bit 7-0 (RXNUM[5:0] \rightarrow RXNUM[7:0])
		Revised description of bit 7-0
		17.7.1. Outline
		Revised description
		17.7.4. FIFO structure and description
		 Revised figure 17-6 Revised description of "Simultaneous transmission and reception mode (TXDIS = 0 and
		• Revised description of "Simultaneous transmission and reception mode (TXDIS = 0 and RXDIS = 0)"
		 Revised figure 17-7
		 Revised description of "Transmission only mode (TXDIS = 0 and RXDIS = 1)"
		• Revised figure 17-8
		• Revised description of "Reception only mode (TXDIS = 1 and RXDIS = 0)"
		18.6.4. Interrupt enable register (URTxIER)
		• Revised description of bit 1

FUĴITSU

Date	Ver.	Contents	
2010/10/15	1.5	18.6.7. Line control register (URTxLCR)	
		• Revised description of bit 7	
		18.6.8. Modem control register (URTxMCR)	
		• Revised description of bit 4	
		• Revised bit 3, bit 2, and bit 0 to "Reserved bit"	
		18.6.10. Modem status register (URTxMSR)	
		• Revised bit 7-5 and bit 3-1 to "Reserved bit"	
		20.6.2. SPI control register (SPICR)	
		• Revised figure 20-4	
		• Revised figure 20-5	
		23.6.1. Register list	
		Revised description	
		• Revised table 23-2	
		• Revised table 23-3	
		• Revised table 23-4	
		23.6.2.1. HCCAPBASE (Capability Register) ~ 23.6.2.18. INSNREG05 (UTMI Control Status	
		Register)	
		Revised description	
		23.6.3.1. HcRevision (Revision Register)	
		Revised description of bit 7-0	
		23.6.3.2. HcControl (Control Register) ~ 23.6.3.3. HcCommandStatus (Command/Status Register)	
		Revised description	
		23.6.3.4. HcInterruptStatus (Interrupt Status Register)	
		Revised description in R/W columnRevised description of bit 4	
		* *	
		23.6.3.5. HcInterruptEnable (Interrupt Enable Register) ~ 23.6.3.6. HcInterruptDisable (Interrupt Disable Register)	
		Revised description in R/W column	
		23.6.3.8. HcPeriodCurrentED (Periodic Current ED Register) ~ 23.6.3.19. HcRhDescriptorA	
		(Root Hub Descriptor A Register)	
		• Revised description in R/W column	
		23.6.3.21. HcRhStatus (Root Hub Status Register) ~ 23.6.3.22. HcRhPortStatus[1] (Root Hub	
		Port Status/Control Register 1)	
		Revised description in R/W column	
		23.6.4.1. LinkModeSetting (Link Mode Setting Register)	
		Revised description in initial value column	
		Revised description of bit 31-0	
		23.6.4.2. PHYModeSetting1 (PHY Mode Setting 1 Register)	
		Revised description in initial value column	
		• Revised description of bit 27-24	
		Revised description of bit 0	
		26.5.2. CHIP ID register (CCID)	
		• Revised description in initial value column of bit 7-0	
		Revised description of bit 7-0	
		26.5.11. AXI polarity setting register (CAXI_PS)	
		Revised description Added note	
		Revised description of bit 18-16Revised description of bit 14-12	
		 Revised description of bit 14-12 Revised description of bit 10-8 	
		 Revised description of bit f0-8 Revised description of bit 6-4 	
		 Revised description of bit 0-4 Revised description of bit 2-0 	
		26.5.12. Multiplex mode setting register (CMUX_MD)	
		Added note	
1	I		

Contents

1.	Out	lline	1-1
1	1.1.	Feature	
1	1.2.	Block diagram	
1	1.3.	Function list	
1	1.4.	Package dimension	
1	1.5.	Pin assignment	
1	l.6.	Pin function	
	1.6.1	. Pin Multiplex	
	1.6.2	Pin function	
	1.6.3	External bus interface related pin	
	1.6.4	. IDE66 related pin	
	1.6.5	5. SD memory controller related pin	
	1.6.6	5. USB 2.0 Host/Function related pin	
	1.6.7	. External interrupt controller related pin	
	1.6.8	3. UART related pin	
	1.6.9	CAN related pin	
	1.6.1	0. I2S related pin	
	1.6.1	1. I ² C related pin	
	1.6.1	2. SPI related pin	
	1.6.1	3. PWM related pin	
	1.6.1	4. A/D converter related pin	
	1.6.1	5. DDR2 related pin	
	1.6.1	6. DISPLAY related pin	
	1.6.1	7. Video capture related pin	
	1.6.1	8. System related pin	
	1.6.1	9. JTAG related pin	
	1.6.2	0. ICE related pin	
	1.6.2	1. Multiplex setting related pin	
	1.6.2	2. ETM related pin	
	1.6.2	3. Power supply related pin	
	1.6.2	4. MediaLB related pin	
	1.6.2	5. GPIO related pin	
	1.6.2	6. Unused pin	
	1.6.2	7. Unused pin in the duplex case with pin multiplex function	
2.	Sys	stem configuration	2-1
3.	Ме	mory map	3-1
	3.1.	Memory map of LSI	2 1
	3.2.	Register access	
		Register map	
4.	CP	U (ARM926EJ-S core part)	4-1
4	4.1.	Outline	
2	4.2.	Feature	

4.3.	Block diagram	
4.4.	ARM926EJ-S and ETM setting	
5. CI	lock reset generator (CRG)	5-1
5.1.	Outline	
5.2.	Feature	
5.3.	Block diagram	
5.4.	Register	
5.4	4.1. Register list	
5.4	4.2. PLL control register (CRPR)	
5.4	4.3. Watchdog timer control register (CRWR)	
5.4	4.4. Reset/Standby control register (CRSR)	
5.4	4.5. Clock divider control register A (CRDA)	
5.4	4.6. Clock divider control register B (CRDB)	
5.4	4.7. AHB (A) bus clock gate control register (CRHA)	
5.4	4.8. APB (A) bus clock gate control register (CRPA)	
5.4	4.9. APB (B) bus clock gate control register (CRPB)	
5.4	4.10. AHB (B) bus clock gate control register (CRHB)	
5.4	4.11. ARM core clock gate control register (CRAM)	
5.5.		
5.5	5.1. Generation of reset	
5.5	5.2. Clock generation	
6. Re	emap boot controller (RBC)	6-1
6.1.	Outline	
6.2.	Feature	
6.3.	Block diagram	
6.4.	Supply clock	
6.5.	Register	
	5.1. Register list	
	5.2. Remap control register (RBREMAP)	
	5.3. VINITHI control register A (RBVIHA)	
	5.4. INITRAM control register A (RBITRA)	
6.6.	Operation	
6.6	5.1. RBC reset	
6.6	5.2. Remap control	
6.6	5.3. VINITHI control	
6.6	5.4. INITRAM control	
		- 4
7. IN	terrupt controller (IRC)	
7 1	Outline	7 1
7.1.	Outline	
7.2.	Feature	
7.3.	Block diagram	
7.4.	Supply clock	
7.5.	Interrupt map	
	5.1. Exception vector to ARM926EJ-S core	
	5.2. Extension IRQ interrupt vector of IRC0/IRC1IRC0/IRC1	
7.6.	Register	
7.6	5.1. Register list	7-6

FUĴITSU

7.6.2.	IRQ flag register (IR0IRQF/ IR1IRQF)	
7.6.3.	IRQ mask register (IR0IRQM/IR1IRQM)	
7.6.4.	Interrupt level mask register (IR0ILM/IR1ILM)	
7.6.5.	ICR monitoring register (IR0ICRMN/IR1ICRMN)	
7.6.6.	Delay interrupt control register 0 (IR0DICR0)	7-14
7.6.7.	Delay interrupt control register 1 (IR0DICR1)	
7.6.8.	Table base register (IR0TBR/IR1TBR)	
7.6.9.	Interrupt vector register (IR0VCT/IR1VCT)	
7.6.10.	Interrupt control register (IR0ICR31/IR1ICR31 – IR0ICR00/IR1ICR00)	
7.7. Op	eration	
7.7.1.	Outline	
7.7.2.	Initialization	
7.7.3.	Multiple interrupt process	
7.7.4.	Example of IRQ interrupt handler	
7.7.5.	Resume from Stop and standby modes	
7.7.6.	Notice for using IRC	
8. Exteri	nal bus interface	8-1
8.1. Ou	tline	
8.2. Spe	ec limitation	
8.3. Fea	ature	
8.4. Blo	ock diagram	
8.5. Re	lated pin	
8.6. Suj	pply clock	
8.7. Re	gister	
8.7.1.	SRAM/Flash mode register 0-7 (MCFMODE0-7)	
8.7.2.	SRAM/Flash timing register 0-7 (MCFTIM0-7)	
8.7.3.	SRAM/Flash area register 0-7 (MCFAREA0-7)	
8.7.4.	Memory controller error register (MCERR)	
8.8. Co	nnection example	
8.9. Exa	ample of access waveform	
8.10. Op	eration	
8.10.1.	External bus interface	
8.10.2.	Low-speed device interface function	
8.10.3.	Endian and byte lane to each access	
9. DDR2	controller	
9.1. Ou	tline	
	ature	
	ock diagram	
	oply clock	
	gister	
9.5.1.	Register list	
9.5.2.	DRAM initialization control register (DRIC)	
9.5.3.	DRAM initialization command register [1] (DRIC1)	
9.5.4.	DRAM initialization command register [2] (DRIC2)	
9.5.5.	DRAM CTRL ADD register (DRCA)	
9.5.6.	DRAM control mode register (DRCM)	
9.5.7.	DRAM CTRL SET TIME1 Register (DRCST1)	
9.5.8.	DRAM CTRL SET TIME2 register (DRCST2)	

9.5.9.	DRAM CTRL REFRESH register (DRCR)	
9.5.10.	DRAM CTRL FIFO register (DRCF)	
9.5.11.	AXI setting register (DRASR)	
9.5.12.	DRAM IF MACRO SETTING DLL register (DRIMSD)	
9.5.13.	DRAM ODT SETTING register (DROS)	
9.5.14.	IO buffer setting ODT1 (DRIBSODT1)	
9.5.15.	ODT auto bias adjust register (DROABA)	
9.5.16.	ODT bias select register (DROBS)	
9.5.17.	OCD impedance setting Rrgister1 (DROISR1)	
9.5.18.	OCD impedance setting register2 (DROISR2)	
9.6. Ope	eration	
9.6.1.	DRAM initialization sequence	
9.6.2.	DRAM initialization procedure	
9.6.2.1	•	
9.6.2.2	1 I	
10. Built-i	n SRAM	10-1
10.1. Out	line	
10.2. Fea	ture	
10.3. Blo	ck diagram	
10.4. Sup	ply clock	
11. DMA c	controller (DMAC)	11-1
11.1. Out	line	
11.2. Fea	ture	
11.3. Blo	ck diagram	
11.4. Rel	ated pin	
11.5. Sup	ply clock	
11.6. Reg	gister	
11.6.1.	Register list	
11.6.2.	DMA configuration register (DMACR)	
11.6.3.	DMA configuration A register (DMACAx)	
11.6.4.	DMA configuration B register (DMACBx)	
11.6.5.	DMAC source address register (DMACSAx)	
11.6.6.	DMAC destination address register (DMACDAx)	
11.7. Ope	eration	
11.7.1.	Transfer mode	
11.7.1	.1. Block transfer	
11.7.1	.2. Burst transfer	
11.7.1	.3. Demand transfer	
11.7.2.	Beat transfer	
11.7.2	.1. Normal and Single transfer	
11.7.2	-	
11.7.3.	Channel priority control	
11.7.3		
11.7.3		
11.7.4.	- ·	
11.7.4	• •	
11.7.4	• •	
11.8. Exa	mple of DMAC setting	

FUĴITSU

11.	8.1. DMA start in Single channel	
	8.2. DMA start in all channels (in demand transfer mode)	
12. Tiı	mer (TIMER)	12-1
12.1.	Outline	
12.2.	Feature	
12.3.	Supply clock	
12.4.	Specification	
13. Ge	eneral-purpose input/output port (GPIO)	
13.1.	Outline	
13.2.	Feature	
13.3.	Block diagram	
13.4.	Supply clock	
13.5.	Register	
13.	5.1. Register list	
13.	5.2. Port data register 0-2 (GPDR0-2)	
13.	5.3. Data direction register 0-2 (GPDDR2-0)	
13.6.	Operation	
13.	6.1. Direction control	
13.	6.2. Data transfer	
14 PV	VM	14-1
14.1 4		
14.1.	Outline	
14.2.	Feature	
14.3.	Block diagram	
14.4.	Related pin	
14.5.	Supply clock	
14.6.	Interrupt	
14.7.	Register	
	7.1. Register list	
14.	7.2. PWMx base clock register (PWMxBCR)	
	7.3. PWMx pulse width register (PWMxTPR)	
	7.4. PWMx phase register (PWMxPR)	
	7.5. PWMx duty register (PWMxDR)	
	7.6. PWMx status register (PWMxCR)	
	7.7. PWMx start register (PWMxSR)	
	7.8. PWMx current count register (PWMxCCR)	
	7.9. PWMx interrupt register (PWMxIR)	
14.8.	Example of setting register	
15. A/	D converter	15-1
15.1.	Outline	
15.2.	Feature	
15.3.	Block diagram	
15.4.	Related pin	
15.5.	Supply clock	
15.6.	Output truth value list	

15.7. Analog pin equivalent circuit	
15.8. Register	
15.8.1. Register list	
15.8.2. ADCx data register (ADCxDATA)	
15.8.3. ADCx power down control register (ADCxXPD)	
15.8.4. ADCx clock selection register (ADCxCKSEL)	
15.8.5. ADCx status register (ADCxSTATUS)	
15.9. Basic operation flow	
16. Graphics display controller (GDC)	
17. Serial audio interface (I2S)	
17.1. Outline	
17.2. Feature	
17.3. Block diagram	
17.4. Related pin	
17.5. Supply clock	
17.6. Register	
17.6.1. Register list	
17.6.2. I2SxRXFDAT register	
17.6.3. I2SxTXFDAT register	
17.6.4. I2SxCNTREG register	
17.6.5. I2SxMCR0REG register	
17.6.6. I2SxMCR1REG register	
17.6.7. I2SxMCR2REG register	
17.6.8. I2SxOPRREG register	
17.6.9. I2SxSRST register	
17.6.10. I2SxINTCNT register	
17.6.11. I2SxSTATUS register	
17.6.12. I2SxDMAACT register	
17.7. Operation	
17.7.1. Outline	
17.7.2. Transfer start, stop, and malfunction	
17.7.3. Frame construction	
17.7.3.1. 1 sub frame construction	
17.7.3.2. 2 sub frame construction	
17.7.3.3. Bit alignment	
17.7.4. FIFO structure and description	
18. UART interface	18-1
18.1. Outline	
18.2. Feature	
18.3. Block diagram	
18.4. Related pin	
18.5. Supply clock	
18.6. Register	
18.6.1. Register list	
18.6.2. Reception FIFO register (URTxRFR)	
18.6.3. Transmission FIFO register (URTxTFR)	

18.6.4	. Interrupt enable register (URTxIER)	
18.6.5	. Interrupt ID register (URTxIIR)	
18.6.6	5. FIFO control register (URTxFCR)	
18.6.7	Line control register (URTxLCR)	
18.6.8	8. Modem control register (URTxMCR)	
18.6.9	Line status register (URTxLSR)	
18.6.1	0. Modem status register (URTxMSR)	
18.6.1	1. Divider latch register (URTxDLL&URTxDLM)	
18.7. U	JART operation	
18.7.1	. Example of initial setting	
18.7.2	· ·	
18.7.3	Example of reception procedure	
18.7.4		
18.7.5	*	
18.7.6		
18.7.7		
	I I I I I I I I I I I I I I I I I I I	
19. I ² C k	ous interface	
19.1. C	Dutline	
19.2. F	?eature	
19.3. E	Block diagram	
	Related pin	
19.5. S	upply clock	
19.6. F	Register	
19.6.1	•	
19.6.2	Bus status register (I2CxBSR)	
19.6.3		
19.6.4		
19.6.5	- · · · · · · · · · · · · · · · · · · ·	
19.6.6	-	
19.6.7	• · · · · · · · · · · · · · · · · · · ·	
19.6.8		
19.6.9		
	Dperation	
19.7.1	•	
19.7.2		
19.7.3		
19.7.4	-	
19.7.5	•	
19.7.6		
19.7.7		
19.7.8		
19.7.9		
19.7.5		
	 One byte transfer from stave to master	
	 Recover from bus enor	
	Votice	
	Flow Charts	
17.7. I		

20. Seria	al peripheral interface (SPI)	20-1
20.1. O	utline	20-1
	eature	
	lock diagram	
	upply clock	
	ransition state	
	egister	
20.6.1.	0	
20.6.2.		
20.6.3.	SPI slave control register (SPISCR)	
20.6.4.	SPI data register (SPIDR)	
20.6.5.	SPI status register (SPISR)	
20.7. Se	etup procedure flow	
21. CAN	interface (CAN)	21-1
21.1. O	utline	
21.2. Bl	lock diagram	
21.3. Su	upply clock	
21.4. Re	egister	
22. Medi	aLB interface	22-1
22.1. O	utline	
22.2. Bl	lock diagram	
22.3. Su	upply clock	
22.4. Re	egister	
23. USB	Host Controller	23-1
23.1. O	utline	
	pec limitation	
1	eature	
23.4. Bl	lock diagram	
23.5. Su	upply clock	
23.6. Re	egister	
23.6.1.	Register list	
23.6.2.	1 0	
23.6	5.2.1. HCCAPBASE (Capability Register)	
23.6	5.2.2. HCSPARAMS (Structural Parameter Register)	
	5.2.3. HCCPARAMS (Capability Parameter Register)	
23.6	5.2.4. USBCMD (USB Command Register)	
23.6		
	5.2.6. USBINTR (USB Interrupt Enable Register)	
23.6		
	5.2.8. CTRLDSSEGMENT (4G Segment Selector Register)	
	5.2.9. PERIODICLISTBASE (Periodic Frame List Base Address Register)	
	5.2.10. ASYNCLISTADDR (Asynchronous List Address Register)	
	5.2.11. CONFIGFLAG (Configured Flag Register)	
23.6	5.2.12. PORTSC_1 (Port Status/Control Register 1)	

23.6.2.13.	INSNREG00 (Programmable Microframe Base Value Register)	
23.6.2.14.	INSNREG01 (Programmable Packet Buffer OUT/IN Threshold Register)	
23.6.2.15.	INSNREG02 (Programmable Packet Buffer Depth Register)	
23.6.2.16.	INSNREG03 (Time-Available Offset Register)	
23.6.2.17.	INSNREG04 (Debug Register)	
23.6.2.18.	INSNREG05 (UTMI Control Status Register)	
23.6.3. OH	CI Operational Registers	
23.6.3.1.	HcRevision (Revision Register)	
23.6.3.2.	HcControl (Control Register)	
23.6.3.3.	HcCommandStatus (Command/Status Register)	
23.6.3.4.	HcInterruptStatus (Interrupt Status Register)	
23.6.3.5.	HcInterruptEnable (Interrupt Enable Register)	
23.6.3.6.	HcInterruptDisable (Interrupt Disable Register)	
23.6.3.7.	HcHCCA (HCCA Register)	
23.6.3.8.	HcPeriodCurrentED (Periodic Current ED Register)	
23.6.3.9.	HcControlHeadED (Control Head ED Register)	
23.6.3.10.	HcControlCurrentED (Control Current ED Register)	
23.6.3.11.	HcBulkHeadED (Bulk Head ED Register)	
23.6.3.12.	HcBulkCurrentED (Bulk Current ED Register)	
23.6.3.13.	HcDoneHead (Done Head Register)	
23.6.3.14.	HcFmInterval (Frame Interval Register)	
23.6.3.15.	HcFmRemaining (Frame Remaining Register)	
23.6.3.16.	HcFmNumber (Frame Number Register)	
23.6.3.17.	HcPeriodicStart (Periodic Start Register)	
23.6.3.18.	HcLSThreshold (LS Threshold Register)	
23.6.3.19.	HcRhDescriptorA (Root Hub Descriptor A Register)	
23.6.3.20.	HcRhDescriptorB (Root Hub Descriptor B Register)	
23.6.3.21.	HcRhStatus (Root Hub Status Register)	
23.6.3.22.	HcRhPortStatus[1] (Root Hub Port Status/Control Register 1)	
23.6.4. Oth	er Registers	
23.6.4.1.	LinkModeSetting (Link Mode Setting Register)	
23.6.4.2.	PHYModeSetting1 (PHY Mode Setting 1 Register)	
23.6.4.3.	PHYModeSetting2 (PHY Mode Setting 2 Register)	
24. USB func	tion controller	24-1
	agram	
	:lock	
-		
	gister list	
	B Function CPU Access Control Register (UFCpAC)	24-5
	B Function Device Control Register (UFDvC)	
24.5.4. US	B Function Device Control Register (UFDvC) B Function Device Status Register (UFDvS)	
24.5.4. US 24.5.5. US	B Function Device Control Register (UFDvC) B Function Device Status Register (UFDvS) B Function Endpoint Interrupt Control Register (UFEpIC)	
24.5.4. US 24.5.5. US 24.5.6. US	B Function Device Control Register (UFDvC) B Function Device Status Register (UFDvS) B Function Endpoint Interrupt Control Register (UFEpIC) B Function Endpoint Interrupt Status Register (UFEpIS)	
24.5.4. US 24.5.5. US 24.5.6. US 24.5.7. US	 B Function Device Control Register (UFDvC) B Function Device Status Register (UFDvS) B Function Endpoint Interrupt Control Register (UFEpIC) B Function Endpoint Interrupt Status Register (UFEpIS) B Function Endpoint DMA Control Register (UFEpDC) 	
24.5.4. US 24.5.5. US 24.5.6. US 24.5.7. US 24.5.8. US	 B Function Device Control Register (UFDvC) B Function Device Status Register (UFDvS) B Function Endpoint Interrupt Control Register (UFEpIC) B Function Endpoint Interrupt Status Register (UFEpIS) B Function Endpoint DMA Control Register (UFEpDC) B Function Endpoint DMA Status Register (UFEpDS) 	
24.5.4. US 24.5.5. US 24.5.6. US 24.5.7. US 24.5.8. US 24.5.9. US	 B Function Device Control Register (UFDvC)	
24.5.4. US 24.5.5. US 24.5.6. US 24.5.7. US 24.5.8. US 24.5.9. US 24.5.9. US 24.5.10. UF	 B Function Device Control Register (UFDvC) B Function Device Status Register (UFDvS) B Function Endpoint Interrupt Control Register (UFEpIC) B Function Endpoint Interrupt Status Register (UFEpIS) B Function Endpoint DMA Control Register (UFEpDC) B Function Endpoint DMA Status Register (UFEpDS) 	

24.5.12.	USB Function Endpoint2 Terminal Count Register (UFEpTC2)	24-15
	USB Function Endpoint0 Rx Size Register (UFEpRS0)	
	USB Function Endpoint1 Rx Size Register (UFEpRS1)	
	USB Function Endpoint2 Rx Size Register (UFEpRS2)	
	USB Function Endpoint3 Rx Size Register (UFEpRS3)	
	UFCusCnt Register	
	UFCALB Register	
	UFEpLpBk Register	
	UFIntfAltNum Register	
	USB Function Endpoint0 Control Register (UFEpC0)	
	USB Function Endpoint0 Status Register (UFEpS0)	
	USB Function Endpoint0 Status Register (UFEpS0)	
	USB Function Endpoint1 Status Register (UFEpS1)	
	USB Function Endpoint? Status Register (UFEpS7)	
	USB Function Endpoint2 Control Register (UFEpS2)	
	USB Function Endpoint3 Control Register (UFEpC3)	
	USB Function Endpoint3 Status Register (UFEpS3)	
	USB Function Endpoint0 IN Buffer Register (UFEpIB0)	
	USB Function Endpoint1 IN Buffer Register (UFEpIB1)	
	USB Function Endpoint2 IN Buffer Register (UFEpIB2)	
	USB Function Endpoint3 IN Buffer Register (UFEpIB3)	
	USB Function Endpoint0 OUT Buffer Register (UFEpOB0)	
	USB Function Endpoint1 OUT Buffer Register (UFEpOB1)	
	USB Function Endpoint2 OUT Buffer Register (UFEpOB2)	
	UFConfig Registers	
	USB Function Endpoint1 DMA Control/Status Register (UFEpDC1)	
	USB Function Endpoint2 DMA Control/Status Register (UFEpDC2)	
	USB Function Endpoint1 DMA Address Register (UFEpDA1)	
	USB Function Endpoint2 DMA Address Register (UFEpDA2)	
	USB Function Endpoint1 DMA Size Register (UFEpDS1)	
24.5.42.	USB Function Endpoint2 DMA Size Register (UFEpDS2)	24-52
24.6. Ope	ration	24-53
24.6.1.	EndPoint composition	24-53
24.6.2.	Reset sequence	24-54
24.6.3.	To start communication with releasing DisConnect of the UFDvC register	
	within 6ms after internal UTMI system reset is released	24-55
24.6.4.	To release DisConnect after shifting the state to suspend without releasing	
	DisConnect for 6ms or more after internal UTMI system reset is released	24-56
24.6.5.	CpuBusWidth and CpuByteOder setting	24-57
24.6.6.	CpuByteOder setting value and USB transfer byte order	
24.6.7.	Access method to Function Link ENDPOINT buffer (slave interface)	
24.6.8.	Function Link data transfer flow	
24.6.8.		
24.6.8.		
	and a part of standard command	
	(GET_DESCRIPTOR/SET_DESCRIPTOR/SYNCH_FRAME))	24-61
24.6.8.		
24.6.8.	-	
2 r.0.0.	and a part of standard command	
	(GET_DESCRIPTOR/SET_DESCRIPTOR/SYNCH_FRAME))	24-63
24.6.8.		
24.0.8. 24.6.8.		
24.0.8.		

	24.6.9.	Reception's basic operation (data reading by Slave I/F)	24-69
	24.6.10.	Reception operation and status	24-70
	24.6.11.	Basic transmission operation (data writing by the slave I/F)	24-71
	24.6.12.	Transmission operation and status	24-72
	24.6.13.	Notice of Control transfer process	24-73
	24.6.14.	DMAC operation (data transfer by Master interface)	24-74
	24.6.14	4.1. 2 modes in DMA mode	24-76
	24.6.14	4.2. DMA interface	24-76
	24.6.15.	DMA mode setting procedure	24-77
	24.6.16.	Null packet transmission/reception	24-81
	24.6.17.	SPR mode and SPDD mode	24-82
	24.6.1	7.1. SPR mode	24-82
	24.6.1	7.2. SPDD mode	24-83
	24.6.1	7.3. Mode and DMA interface timing	24-84
	24.6.18.	Operation timing of EMPTY* status bit	24-87
	24.6.19.	Pull-Up resistor	24-88
	24.6.20.	Analog power supply control and analogue power down control	24-89
	24.6.21.	Control for when configuration setting value (wValue) receives "0"	
		SetConfiguration command	24-90
	24.6.22.	Total count transfer setting value and transfer volume setting value of external DMAC	24-91
		Interrupt factor (except USB bus reset) phenomenon after USB bus reset	
25	. IDE ho	est controller (IDE66)	25-1
-	-		-
	25.1. Out	line	25-1
2	25.2. Feat	ure	25-1
2	25.3. Bloo	ck diagram	25-2
2		ited pin	
2	25.5. Sup	ply clock	25-3
2	25.6. Reg	ister	25-4
	25.6.1.	Register list	25-4
	25.6.2.	CS0 data register (CS0DAT)	25-7
	25.6.3.	CS0 error register (CS0ER)	
	25.6.4.	CS0 features register (CS0FT)	
	25.6.5.	CS0 sector count register (CS0SC)	
	25.6.6.	CS0 sector number register (CS0SN)	25-8
	25.6.7.	CS0 cylinder low register (CS0CL)	
	25.6.8.	CS0 cylinder high register (CS0CH)	
	25.6.9.	CS0 device/head register (CS0DH).	
	25.6.10.	CS0 status register (CS0ST)	
		CS0 command register (CS0CMD)	
		CS1 alternate status register (CS1AS)	
		CS1 device control register (CS1 DC)	
		Data register (IDEDAT)	
		PIO timing control register (IDEPTCR)	
		PIO address setup register (IDEPASR)	
		IDE command register	
		IDE status register (IDEISTR)	
		Interrupt enable register (IDEINER)	
		Interrupt status register (IDEINSR)	
		FIFO command register (IDEFCMR)	
		FIFO status register (IDEFSTR)	

25.6.23.	Transmission FIFO count register (IDETFCR)	25-16
25.6.24.	Reception FIFO count register (IDERFCR)	25-17
	UDMA timing control register (IDEUTCR)	
	UDMA command register (IDEUCMR)	
25.6.27.	UDMA status register (IDEUSTR)	25-19
25.6.28.	RxFIFO rest count compare value (IDERRCC)	25-19
	Ultra DMA timing control 1 (IDEUTC1)	
	Ultra DMA timing control 2 (IDEUTC2)	
	Ultra DMA timing control 3 (IDEUTC3)	
	DMA status register (IDESTATUS)	
	Interrupt register (IDEINT)	
	Interrupt mask register (IDEINTMSK)	
	PIO access control register (IDEPIOCTL)	
	DMA control register (IDEDMACTL)	
	DMA transfer control register (IDEDMATC)	
	DMA source address register (IDEDMASAD)	
	DMA destination address register (IDEDMADAD)	
	Coperation	
25.7.1.	Active time and recovery time	
25.7.2.	Example setting of PIO mode register	
25.7.3.	Example setting of Ultra DMA mode register	
	ction	
26. CCNT		26-1
26.1. Out	line	26-1
26.2. Fea	ture	26-1
26.3. Blo	ck diagram	26-2
26.4. Sup	ply clock	26-2
26.5. Reg	ister	26-3
26.5.1.	Register list	26-3
26.5.2.	CHIP ID register (CCID)	26-5
26.5.3.	Software reset register (CSRST)	26-6
26.5.4.	Interrupt status register (CIST)	26-7
26.5.5.	Interrupt status mask register (CISTM)	26-9
26.5.6.	GPIO interrupt status register (CGPIO_IST)	26-11
26.5.7.	GPIO interrupt status mask register (CGPIO_ISTM)	26-11
26.5.8.	GPIO interrupt polarity setting register (CGPIO_IP)	26-12
26.5.9.	GPIO interrupt mode setting register (CGPIO_IM)	26-12
26.5.10.	AXI bus wait cycle setting register (CAXI_BW)	26-13
26.5.11.		26-14
	AXI polarity setting register (CAXI_PS)	
	AXI polarity setting register (CAXI_PS) Multiplex mode setting register (CMUX_MD)	
		26-16
26.5.14.	Multiplex mode setting register (CMUX_MD)	26-16 26-17
	Multiplex mode setting register (CMUX_MD) External pin status register (CEX_PIN_ST) MediaLB setting register (CMLB)	26-16 26-17 26-18
26.5.15.	Multiplex mode setting register (CMUX_MD) External pin status register (CEX_PIN_ST) MediaLB setting register (CMLB) USB set register (CUSB)	26-16 26-17 26-18 26-20
26.5.15. 26.5.16.	Multiplex mode setting register (CMUX_MD) External pin status register (CEX_PIN_ST) MediaLB setting register (CMLB) USB set register (CUSB) Byte swap switching register (CBSC)	26-16 26-17 26-18 26-20 26-21
26.5.15. 26.5.16. 26.5.17.	Multiplex mode setting register (CMUX_MD) External pin status register (CEX_PIN_ST) MediaLB setting register (CMLB) USB set register (CUSB) Byte swap switching register (CBSC) DDR2 controller reset control register (CDCRC)	26-16 26-17 26-18 26-20 26-21 26-23
26.5.15. 26.5.16. 26.5.17. 26.5.18.	Multiplex mode setting register (CMUX_MD) External pin status register (CEX_PIN_ST) MediaLB setting register (CMLB) USB set register (CUSB) Byte swap switching register (CBSC) DDR2 controller reset control register (CDCRC) Software reset register 0 for macro (CMSR0)	26-16 26-17 26-18 26-20 26-21 26-23 26-24
26.5.15. 26.5.16. 26.5.17. 26.5.18.	Multiplex mode setting register (CMUX_MD) External pin status register (CEX_PIN_ST) MediaLB setting register (CMLB) USB set register (CUSB) Byte swap switching register (CBSC) DDR2 controller reset control register (CDCRC)	26-16 26-17 26-18 26-20 26-21 26-23 26-24

27.1. Outline	
27.2. Feature	
27.3. Block diagram	
27.4. Supply clock	
27.5. Register	
27.5.1. Register list	
27.5.2. External interrupt enable register (EIENB)	
27.5.3. External interrupt request register (EIREQ)	
27.5.4. External interrupt level register (EILVL)	
27.6. Operation	
27.7. Operation procedure	
27.8. Instruction for use	
28. SD memory controller (SDMC)	28-1

1. Outline

This chapter describes feature, block diagram, and function of MB86R01.

1.1. Feature

MB86R01 is LSI product for the graphics applications with ARM Limited's CPU ARM926EJ-S and Fujitsu's GDC MB86296 as its core. This product contains peripheral I/O resources, such as in-vehicle LAN, HDD, and USB; therefore only a single chip of MB86R01 controls main graphics application system which usually requires 2 chips (CPU and GDC.)

MB86R01 has following features:

- CMOS 90nm technology
- Package: PBGA484
- Power-supply voltage: (IO: 3.3 ± 0.3 V, core: 1.2 ± 0.1 V, DDR2: 1.8 ± 0.1 V)
- Operation frequency: 333MHz (CPU), 83MHz (AHB), 41.5MHz (APB)
- CPU core
 - ARM926EJ-S
 - 16KB instruction cache/16KB data cache
 - 16KB ITCM/16KB DTCM
 - ETM9CS Single and JTAG ICE interface
 - Java acceleration (Jazelle technology)
- Bus architecture
 - Multi-layer AHB bus architecture
- Interrupt
- Built-in SRAM
- Clock/Reset control function
- Remap/Boot control function
- 16 bit external bus interface with decoding engine
- 32 bit DDR2 memory interface (target: 166MHz: 333Mbps)
- Graphics display controller
 - 2D/3D rendering engine of Fujitsu MB86296
 - RGB66 video output × 1ch (extensible to RGB888 with using option I/O)
 - ITU RBT-656 video capture × 1ch (extensible to RGB666 with using option I/O)
- USB 2.0 Host (HS/FS protocols) \times 1ch
- IDE66 (ATA/ATAPI-5) × 1ch
- SD memory controller (SDIO/CPRM: unsupported) × 1ch
- 10 bit A/D converter $(1MS/s) \times 2ch$
- I^2C (I/O voltage: 3.3V) × 2ch
- UART \times 3ch (extensible up to 6ch with using option I/O)
- 32/16 bit timer $\times 2$ ch
- DMAC \times 8ch

Option I/O (with pin multiplex)

- RGB666 video output is extensible to 2ch
- Video capture is extensible to 2ch
- MediaLB (MOST50) \times 1ch is addable
- CAN (I/O voltage: 3.3V) × 2ch is addable
- USB 2.0 Function (HS/FS protocols) is switchable (USB 2.0 Function and USB 2.0 Host are accessed exclusively)

- GPIO is addable up to 24
- SPI \times 1ch is addable
- PWM × 2ch is addable
- I2S is addable up to 3ch
- The number of UART channel is extensible up to 6ch
- The data width in the external bus interface is extensible to 32 bit

1.2. Block diagram

Figure 1-1 shows block diagram of MB86R01.

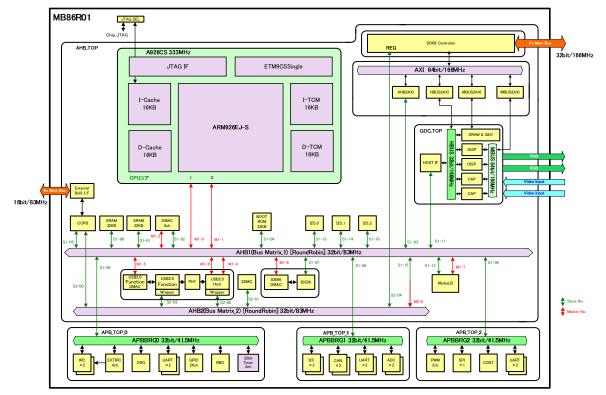


Figure 1-1 Block diagram of MB86R01

CPU core

CPU core block of ARM926EJ-S is connected to each I/O through AHB bus in LSI. Instruction (I)/Data (D) function as a separate bus master for Harvard architecture.

GDC_TOP

MB86296 compatible GDC has 2 functions: AHB slave function which writes required display list for drawing to GDC with having CPU or DMA controller as master, and AXI master function which reads display list arranged in DDR2 memory with having GDC as master.

AXI bus

This bus bridges main memory and internal resource. Following 4 bus masters are connected.

- AHB1: Each bus master of AHB bus such as CPU and DMA controller
- HBUS: HOST IF on GDC
- DRAW & GEO: Draw (2D/3D drawing) and GEO (geometry engine) on GDC
- MBUS: DISP (display controller) and CAP (video capture) on GDC

本页已使用礼	畐昕阅读器进行编辑。
	2005-20099版权所有,
又供试用。	FUITSU

AHB1 bus

Following resources are connected.

- CPU core: Bus masters of instruction (I)/data (D)
- GDC: GDC register part
- **?•** AHB2AXI: AXI port for main memory access
- CCPB: Encrypted ROM decoding block
- External BUS I/F: External bus interface (connected through CCPB)
- SRAM: General purpose internal SRAM 32KB × 2
- DMAC: General purpose DMA × 8ch It operates as bus master at data transfer
 - Boot ROM: Built-in boot ROM
 - $I2S_0/1/2$: Serial audio controller × 3ch
- USB 2.0 Function DMAC: USB Function DMAC
 - It operates as bus master at data transfer
 - USB 2.0 Host: It operates as USB 2.0 EHCI, USB 1.1 OHCI bus masters
 - IDE66/IDE66DMAC: Register part of IDE host controller and built-in DMAC The DMAC part operates as bus master at data transfer
- MLB: MediaLB controller
 - AHB2
 - APBBRG0/1/2: AHB-APB bridge circuit × 3ch

AHB2 bus

- CCPB: Encrypted ROM decoding block
- USB 2.0 Function: USB 2.0 Function controller's register part
- USB 2.0 Host: USB 2.0 Host controller's register part
- SDMC: SD memory controller
- DDR2 controller: DDR2 controller's register part

APB_TOP_0

This block bridges between APBBRG0 bus and the AHB1 bus, and following low-speed peripheral resources are connected.

- Interrupt controller (IRC) × 2ch
- External interrupt controller (EXTIRC)
- Clock reset generator (CRG)
- UART (ch0 and ch1) × 2ch
- Remap boot controller (RBC)
- 32 bit general-purpose timer (32 bit timer) × 2ch

APB_TOP_1

This block bridges between APBBRG1 bus and AHB1 bus, and following low-speed peripheral resources are connected.

- I^2C controller \times 2ch
- CAN controller × 2ch
- UART (ch2 and ch3) × 2ch
- A/D converter (ADC) × 2ch

APB_TOP_2

This block bridges between APBBRG2 bus and AHB1 bus, and following low-speed peripheral resources are connected.

- PWM controller (PWM)
- SPI controller (SPI)
- Chip control module (CCNT)
- UART (ch4 and ch5) × 2ch

1.3. Function list

Function list of MB86R01 is shown below.

Table 1-1MB86R01 funct	ion list
------------------------	----------

Function	Outline
CPU core	• ARM926EJ-S TM processor core
	Core operation frequency: 333MHz
	• 16KB instruction cache
	• 16KB data cache
	 Tightly-Coupled memory for 16KB instruction (ITCM)
	• Tightly-Coupled memory for 16KB data (DTCM)
	• ETM9CS Single and JTAG ICE debugging interface
	Java acceleration (Jazelle technology)
Bus architecture	Multilayer AHB bus architecture
	• Speeding up data transfer between main memory and each bus master with 64 bit AXI bus
Interrupt	 High-speed interrupt × 1ch (software interrupt)
1	 Normal interrupt × 64ch (external interrupt × 4ch + built-in internal interrupt × 60ch)
	 Up to 16 interrupt levels are settable by channel
Clock	 PLL multiplication: selectable from ×15 ~ 49
	• Operation frequency: 333MHz (CPU), 83MHz (AHB), 41.5MHz (APB)
	• Low power consumption mode (clock to ARM and module is stoppable)
Reset	Hardware reset, software reset, and watchdog reset
Remap	ROM area is able to be mapping to built-in SRAM area
External bus interface	• Three chip select signals
	 Provided 32M byte address space in each chip select
	 Supported 16/32 bit width SRAM/Flash ROM connection
	Programmable weight controller
	Encrypted ROM compound engine
DDR2 controller	• Supported DDR2SDRAM (DDR2-400)
	• Connectable capacity: 256 ~ 512M bit × 2 or 256 ~ 512M bit × 1
	• I/O width: Selectable from ×16/×32 bit
Built-in SRAM	Max. transfer rate: 166MHz/333Mbps
	• Mounted general purpose SRAM of 32KB × 2 (32 bit bus)
DMAC	• AHB connection × 8ch
	Transfer mode: Block, burst, and demand
Timer	• 32/16 bit programmable × 2 channels
GPIO(*2)	• Max. 24 is usable
	Interrupt function
PWM(*2)	• Built-in 2 channels
	Duty ratio and phase are configurable
A/D converter	• 10 bit successive approximation type A/D converter × 2ch
	• Sampling rate: 648KS/s (max. sampling plate)
	• Nonlinearity error: ± 2.0LSB (max.)

Function	Outline
GDC (*1)	 Display controller RGB666 or RGB888 output Max. resolution is 1024 × 768 Max. 6 layered display Max. 2 screen output Digital video capture function BT.601, BT.656, and RGB666 Max. 2 inputs Geometry engine (MB86296 compatible display list is usable) 2D/3D drawing function (MB86296 compatible display list is usable)
I ² S (*2)	 Audio output × 3ch (L/R) /Audio input × 3ch (L/R) Supported three-wire serial (I2S, MSB-Justified) and serial PCM data transfer interface Master/Slave operations are selectable Resolution capability: Max. 32 bit/sample
UART (*2)	 Max. 6 channels (dedicated channel: 3ch, option: 3ch) 1 channel: capable of input/output CTS/RTS signals 8 bit pre-scaler for baud rate clock generation Enabled DMA transfer
I2C	 3.3V pin × 2ch Supported standard mode (max. 100kbps)/high-speed mode (max. 400kbps)
SPI (*2)	 Full duplex/Synchronous transmission Transfer data length: 1 bit unit (max. 32 bit) (programmable setting)
CAN (*2)	 Mounted BOSCH C_CAN module × 2ch Conformed to CAN protocol version 2.0 part A and B I/O voltage: 3.3V
MediaLB (*2)	 16 channels MediaLB clock speed: 256Fs/512Fs/1024Fs Built-in 9K bit channel buffer
USB (*2)	 USB 2.0 compliant Host/Function controller × 1ch (pin multiplex) HS/FS protocol support (supported VBus and isochronous transfer)
IDE (*2)	 Supported VDas and isocification and isocification in the second structure of the second stru
SD memory	 Conformed to SD memory card physical layer specification 1.0 Equipped 1 channel Supported SD memory card and multimedia card Unsupported SPI mode, SDIO mode, and CPRM
CCNT	 Mode selection of multiplex pin group 2 and 4 Software reset control AXI interconnection control (priority and WAIT setting)
JTAG	 Conformed to IEIEEE1149.1 (IEEE Standard Test Access Port and Boundary-Scan Architecture) Supported JTAG ICE connection of simultaneous display and number of output display as well as capture input for displaying

*1: Number of layer of simultaneous display and number of output display as well as capture input for displaying in high resolution may be restricted due to data supply capacity of graphics memory (DDR2 controller).

*2: A part of external pin functions of this LSI is multiplexed. Max. number of usable channel is limited by pin multiplex function setting.

1.4. Package dimension

Package dimension of MB86R01 is shown below.

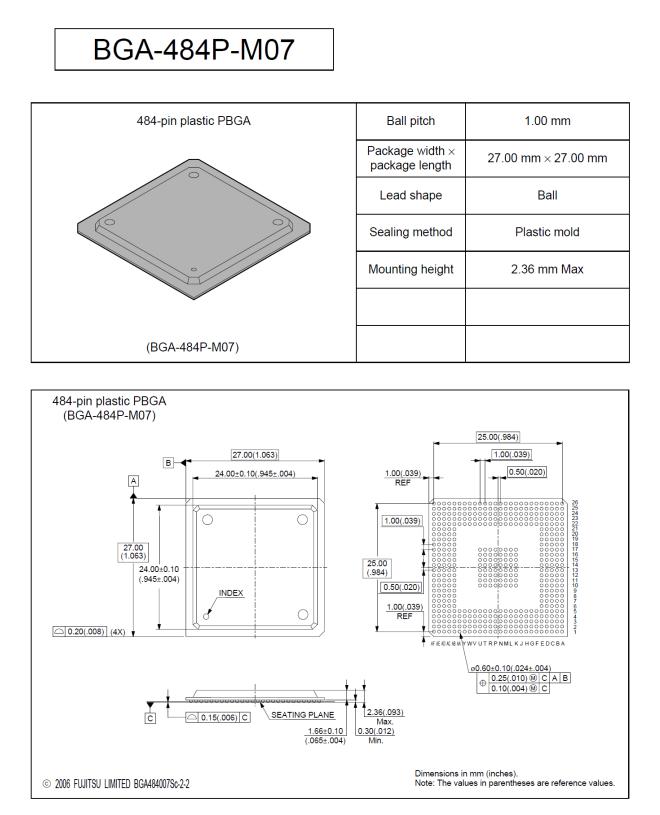


Figure 1-2 BGA-484P-M07 package dimension

1.5. Pin assignment

Pin assignment of MB86R01 is shown below.

(Top view)

A Image: 1 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 B 2 101 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 17 C 3 102 193 276 275 274 273 272 271 270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 160 D 4 103 194 277 352 351 350 349 348 347 346 345 344 343 342 341 340 339 338 337 336 335 334 255 160 E 5 104 195 278 353 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 333 254 160 F 6 105 196 279 354 G 7 106 197 280 355 H 8 107 198 281 356 J 9 108 199 282 357 K 10 109 200 283 358 L 11 110 201 284 359 422 449 468 467 466 465 464 441 M 12 111 202 285 360 422 449 468 467 466 465 464 441 M 12 111 202 285 360 422 449 468 467 466 455 464 441 M 12 111 202 285 360 422 449 468 467 466 455 464 441 M 12 111 202 285 360 422 449 468 467 466 455 464 441 M 12 111 202 285 360 424 451 470 481 484 477 462 439 M 13 112 203 286 361 424 451 470 481 484 477 462 439	26
B 2 101 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 177 C 3 102 193 276 275 274 273 272 271 270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 166 D 4 103 194 277 352 351 350 349 348 347 346 345 344 343 342 341 340 339 338 337 336 335 334 255 166 E 5 104 195 278 353 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 333 254 16 F 6 105 196 279 354 403 332 253 16 G 7 106 197 280 355 402 331 252 166 H 8 107 198 281 356 401 330 251 16 J 9 108 199 282 357 400 329 250 16 K 10 109 200 283 358 421 448 447 446 445 444 43 442 399 328 249 16 L 11 110 02 1284 359 422 449 468 467 466 465 464 441 398 327 248 16 M 12 111 202 285 360 422 451 470 481 484 477 462 439 396 325 246 157 P 14 113 204 287 362 425 452 471 482 483 476 461 438 395 324 425 157 R 15 114 205 288 363 426 453 472 473 474 475 460 437 394 323 244 157 U 17 116 207 290 365 428 429 430 431 432 433 4	`
C 3 102 193 276 275 274 273 272 271 270 269 268 267 266 265 264 263 262 261 260 259 258 257 256 160 D 4 103 194 277 352 351 350 349 348 347 346 345 344 343 342 341 340 339 338 337 336 335 334 255 160 E 5 104 195 278 353 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 333 254 160 F 6 105 196 279 354 403 332 253 160 G 7 106 197 280 355 402 331 252 160 H 8 107 198 281 356 401 330 251 160 J 9 108 199 282 357 400 329 250 160 K 10 109 200 283 358 422 449 468 467 466 465 464 441 398 327 248 160 J 11 110 201 284 359 422 449 468 467 466 465 464 441 398 327 248 160 M 12 111 202 285 360 423 450 469 480 479 478 463 440 397 326 247 160 N 13 112 203 286 361 424 451 470 481 484 477 462 439 396 325 246 153 P 14 113 204 287 362 425 452 471 482 483 476 461 438 393 322 243 155 R 15 114 205 288 363 426 453 472 473 474 475 460 437 394 323 244 155 T 16 152 066 289 364 427 454 455 456 457	76
D 4 103 194 277 352 351 350 349 348 347 346 345 344 343 342 341 340 339 338 337 336 335 334 255 160 E 5 104 195 278 353 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 333 254 160 F 6 105 196 279 354 403 332 253 160 G 7 106 197 280 355 402 331 252 160 H 8 107 198 281 356 401 330 251 16 J 9 108 199 282 357 400 329 250 160 K 10 109 200 283 358 421 448 447 446 445 444 443 442 399 328 249 160 L 11 110 201 284 359 422 449 468 467 466 465 464 441 398 327 248 160 M 12 111 202 285 360 423 450 469 480 479 478 463 440 397 326 247 160 N 13 112 203 286 361 424 451 470 481 484 477 462 439 396 325 246 150 P 14 113 204 287 362 425 452 471 482 483 476 461 438 395 324 245 150 R 15 114 205 288 363 426 453 472 473 474 475 460 437 394 323 244 155 U 17 116 207 290 365 428 429 430 431 432 433 434 435 392 321 242 155 V 18 117 208 291 366 391 320 241 155	75
E 5 104 195 278 353 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 333 254 16 F 6 105 196 279 354 403 332 253 16 G 7 106 197 280 355 402 331 252 16 H 8 107 198 281 356 401 330 251 16 J 9 108 199 282 357 400 329 250 16 K 10 109 200 283 358 421 448 447 446 445 444 443 442 399 328 249 16 L 11 110 201 284 359 422 449 468 467 466 465 464 441 398 327 248 16 M 12 111 202 285 360 423 450 469 480 479 478 463 440 397 326 247 16 N 13 112 203 286 361 424 451 470 481 484 477 462 439 396 325 246 153 P 14 113 204 287 362 425 452 471 482 483 476 461 438 395 324 245 153 R 15 114 205 288 363 426 453 472 473 474 475 460 437 394 323 244 155 U 17 116 207 290 365 428 429 430 431 432 433 434 435 392 321 242 155 V 18 117 208 291 366 391 320 241 155 390 319 240 155 V 18 117 208 291 366 389 318 239 155 388 317 238 15	74
F 6 105 196 279 354 403 332 253 160 G 7 106 197 280 355 402 331 252 160 H 8 107 198 281 356 401 330 251 160 J 9 108 199 282 357 400 329 250 160 K 10 109 200 283 358 421 448 447 446 445 444 442 399 328 249 160 L 11 110 201 284 359 422 449 468 467 466 464 441 398 327 248 160 M 12 111 202 285 360 423 450 469 480 479 478 463 440 397 326 247 166 397 326 246 157 396 325 246 157 394 322 <td>73</td>	73
G 7 106 197 280 355 402 331 252 163 H 8 107 198 281 356 401 330 251 166 J 9 108 199 282 357 400 329 250 166 K 10 109 200 283 358 421 448 447 446 445 444 442 399 328 249 166 L 11 110 201 284 359 422 449 468 467 466 465 444 1398 327 248 166 M 12 111 202 285 360 423 450 469 480 479 478 463 440 397 326 247 166 18 395 322 242 155 17 16 115 206 289 364 427 455 456 457 458 493 393 322 242 155 </td <td>72</td>	72
H 8 107 198 281 356 401 330 251 16 J 9 108 199 282 357 400 329 250 16 K 10 109 200 283 358 421 448 447 446 445 444 442 399 328 249 16 L 11 110 201 284 359 422 449 468 467 466 465 4441 398 327 248 16 M 12 111 202 285 360 423 450 469 480 479 478 463 440 397 326 247 16 N 13 112 203 286 361 424 451 470 481 484 477 462 439 396 325 246 15 R 15 114 205 288 363 426 453 472 473 474 456	71
J 9 108 199 282 357 400 329 250 163 K 10 109 200 283 358 421 448 447 446 445 444 443 442 399 328 249 163 L 11 110 201 284 359 422 449 468 467 466 465 464 441 398 327 248 166 M 12 111 202 285 360 423 450 469 480 479 478 463 440 397 326 247 166 N 13 112 203 286 361 424 451 470 481 484 477 462 439 396 325 246 157 16 115 204 288 363 426 453 472 473 474 475 460 437 394 323 244 157 16 115 206 289	70
K 10 109 200 283 358 421 448 447 446 445 444 443 442 399 328 249 163 L 11 110 201 284 359 422 449 468 467 466 465 4441 398 327 248 163 M 12 111 202 285 360 423 450 469 480 479 478 463 440 397 326 247 160 N 13 112 203 286 361 424 451 470 481 484 477 462 439 396 325 246 155 P 14 113 204 287 362 425 452 471 482 483 476 461 438 395 324 245 155 R 15 114 205 288 363 426 453 472 473 474 475 460 <td< td=""><td>69</td></td<>	69
L 11 110 201 284 359 422 449 468 467 466 465 464 441 398 327 248 16 M 12 111 202 285 360 423 450 469 480 479 478 463 440 397 326 247 16 N 13 112 203 286 361 424 451 470 481 484 477 462 439 396 325 246 15 P 14 113 204 287 362 425 452 471 482 483 476 461 438 395 324 245 15 R 15 114 205 288 363 426 453 472 474 475 460 437 394 323 244 15 15 I 16 115 206 289 364 427 454 455 456 457 458 459 <td>68</td>	68
M 12 111 202 285 360 423 450 469 480 479 478 463 440 397 326 247 160 N 13 112 203 286 361 424 451 470 481 484 477 462 439 396 325 246 157 P 14 113 204 287 362 425 452 471 482 483 476 461 438 395 324 245 157 394 323 244 157 394 323 244 157 394 323 244 157 393 322 243 157 393 322 243 156 393 322 243 156 393 322 243 156 393 322 243 156 393 322 243 156 393 322 243 156 393 322 243 156 393 322 243 156 393 322 243	67
N 13 112 203 286 361 424 451 470 481 484 477 462 439 396 325 246 157 P 14 113 204 287 362 425 452 471 482 483 476 461 438 395 324 245 157 R 15 114 205 288 363 426 453 472 475 460 437 394 323 244 157 T 16 115 206 289 364 427 454 455 456 457 458 459 436 393 322 243 157 U 17 116 207 290 365 428 429 430 431 432 433 4435 392 321 242 157 V 18 117 208 291 366 391 320 241 157 Y 20 119 210 29	66
P 14 113 204 287 362 425 452 471 482 483 476 461 438 395 324 245 15 R 15 114 205 288 363 426 453 472 473 474 475 460 437 394 323 244 15 T 16 115 206 289 364 427 454 455 456 457 458 459 436 393 322 243 157 U 17 116 207 290 365 428 429 430 431 432 433 444 435 392 321 242 157 V 18 117 208 291 366 393 322 241 157 W 19 118 209 292 367 389 318 239 157 AA 21 120 211 293 368 371 372 373 374<	65
R 15 114 205 288 363 426 453 472 473 474 475 460 437 394 323 244 157 T 16 115 206 289 364 427 455 456 457 458 459 436 393 322 243 156 U 17 116 207 290 365 428 429 430 431 432 433 434 435 392 321 242 157 V 18 117 208 291 366 391 320 241 157 W 19 118 209 292 367 390 319 240 157 Y 20 119 210 293 368 377 376 377 378 379 380 381 382 383 384 385 386 387 316 237 156 AA 21 120 211 224 237 37	64
T 16 115 206 289 364 427 454 455 456 457 458 459 436 393 322 243 154 U 17 116 207 290 365 428 429 430 431 432 433 434 435 392 322 243 154 V 18 117 208 291 366 391 320 241 155 W 19 118 209 292 367 390 319 240 155 Y 20 119 210 293 368 389 318 239 155 AA 21 120 211 294 369 388 317 238 155 AB 22 121 212 295 370 371 372 373 374 375 376 377 378 390 310 311 312 313 314 315 236 144 AD 24	63
U 17 116 207 290 365 428 429 430 431 432 433 434 435 392 321 242 158 V 18 117 208 291 366 391 320 241 158 W 19 118 209 292 367 390 319 240 155 Y 20 119 210 293 368 389 318 239 155 AA 21 120 211 294 369 388 317 238 315 388 317 238 155 AB 22 121 212 295 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 316 237 156 AC 23 122 213 296 297 298 299 300 301 302 303 304	62
V 18 117 208 291 366 391 320 241 157 W 19 118 209 292 367 390 319 240 157 Y 20 119 210 293 368 389 318 239 155 AA 21 120 211 294 369 388 317 238 157 AB 22 121 212 295 370 371 372 373 374 375 376 377 378 379 380 381 382 384 385 386 387 316 237 156 AC 23 122 213 296 297 298 299 300 301 302 303 304 305 306 307 318 311 312 313 314 315 236 144 AD 24 123 214 215 216 217 218 219 220 221 222 <td< td=""><td>61</td></td<>	61
W 19 118 209 292 367 390 319 240 157 Y 20 119 210 293 368 389 318 239 157 AA 21 120 211 294 369 388 317 238 157 AB 22 121 212 295 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 316 237 156 AC 23 122 213 296 297 298 299 300 301 302 303 304 305 306 307 310 311 312 313 314 315 236 144 AD 24 123 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232	60
Y 20 119 210 293 368 389 318 239 150 AA 21 120 211 294 369 388 317 238 315 AB 22 121 212 295 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 316 237 156 AC 23 122 213 296 297 298 299 300 301 302 303 304 305 306 307 310 311 312 313 314 315 236 144 AD 24 123 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 144	59
AA 21 120 211 294 369 388 317 238 15' AB 22 121 212 295 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 316 237 15' AC 23 122 213 296 297 298 299 300 301 302 303 304 305 306 307 310 311 312 313 314 315 236 14' AD 24 123 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 144	58
AB 22 121 212 295 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 316 237 150 AC 23 122 213 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 236 144 AD 24 123 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 144	57
AC 23 122 213 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 236 144 AD 24 123 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 144	56
AD 24 123 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 14	55
	54
AF 25 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 14	53
	52
AF 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	51

Figure 1-3 MB86R01 pin assignment (pin number)

(10) (10)	(Top	view)
-----------	------	-------

					I															1	1	1	1		
O _{vss}	VSS	DCLKOO	VSS	DCLKINO	DOUTG0 [6]	DOUTG0 [2]	DOUTB0 [4]	XSRST	TRACE DATA[3]	XRST	PLLVSS	PLLVDD	TDO	VSS	CLK	MEM XRD	VSS	MEM EA[20]	MEM EA[16]	MEM EA[12]	MEM EA[8]	MEM EA[4]	MEM EA[1]	VSS	VSS
vss	DE0	HSYNCO	VDDE	DOUTR0 [4]	DOUTG0 [7]	DOUTG0 [3]	DOUTB0 [5]	XTRST	TRACE CTL	TRACE DATA[0]	TMS	VINITHI	CRIPM3	VDDE	MEM XCS[4]	MEM XWR[1]	MEM EA[23]	MEM EA[19]	MEM EA[15]	MEM EA[11]	MEM EA[7]	MEM EA[3]	MEM ED[15]	MEM ED[14]	VSS
DOUTE [2]	¹ GV0	VSYNCO	DOUTR0 [7]	DOUTR0 [5]	DOUTR0 [2]	DOUTG0 [4]	DOUTB0 [6]	DOUTB0 [2]	TRACE CLK	TRACE DATA[1]	JTAGSEL	тск	CRIPM2	CRIPMO	MEM XCS[2]	MEM XWR[0]	MEM EA[22]	MEM EA[18]	MEM EA[14]	MEM EA[10]	MEM EA[6]	MEM EA[2]	MEM ED[13]	MEM ED[12]	MEM ED[11
DOUTE [6]	1 DOUTB [5]	DOUTB1 [4]	DOUTB1 [3]	DOUTR0 [6]	DOUTR0 [3]	DOUTG0 [5]	DOUTB0 [7]	DOUTB0 [3]	RTCK	TRACE DATA[2]	LLTDTRS	TDI	CRIPM1	MEM RDY	MEM XCS[0]	MEM EA[24]	MEM EA[21]	MEM EA[17]	MEM EA[13]	MEM EA[9]	MEM EA[5]	MEM ED[10]	MEM ED[9]	MEM ED[8]	MEN ED[7
DOUTO [4]	1 DOUTG	DOUTG1 [2]	DOUTB1 [7]	VDDE	VSS	VSS	VDDE	VDDE	VDDI	VDDI	VSS	VSS	VDDE	VDDE	VDDI	VDDI	VSS	VSS	VDDE	VDDE	VDDI	MEM ED[6]	MEM ED[5]	MEM ED[4]	MEN ED[3
DOUTF [2]	1 DOUTG [7]	DOUTG1 [6]	DOUTG1 [5]	VDDE																	VDDI	MEM ED[2]	MEM ED[1]	MEM ED[0]	VSS
DCLKI 1	DOUTRI [5]	DOUTR1 [4]	DOUTR1 [3]	VDDI																	VSS	MDQ[30]	MDM[3]	MDQ[31]	
vss	VDDE	DOUTR1 [7]	DOUTR1 [6]	VDDI																	VSS	MDQ[25]	MDQ[28]	MDQ[24]	
DOLKO	d GV1	VSYNC1	HSYNC1	VSS													_				DDRVDE	MDQ[27]	MDQ[26]	MDQ[29]	VSS
VIN0 [5]	VIN0 [6]	VIN0 [7]	DE1	VSS					VDDI	VDDE	VDDE	VDDI	VDDI	VDDE	VDDE	VDDI					DDRVDE	MDM[2]	MDQ[23]	VREF1	
VIN0 [1]	VIN0 [2]	VIN0 [3]	VIN0 [4]	VDDE					VDDI	VSS	VSS	VSS	VSS	VSS	VSS	VDDI					DQ22	MDQ[20]	MDQ[17]	MDQ[16]	MDQI N[2]
CCLIK	VDDE	VIN VSYNC0	VIN0 [0]	VDDE					VDDE	VSS	VSS	VSS	VSS	VSS	VSS	DDRVDE					VSS	MDQ[19]	MDQ[18]	MDQ[21]	vss
vss	VINFIDO	VIN HSYNC0	VDDI	VDDI					VDDE	VSS	VSS	VSS	VSS	VSS	VSS	DDRVDE					VDDI	ODT	VSS	DDRVDE	
USB AVSP	USB AVDP			USB AVDB					VDDI	VSS	VSS	VSS	VSS	VSS	VSS	VDDI					VDDI	OCD	VSS	DDRVDE	
USB HSDP	USB FSDP	USB AVDF1		USB EXT12K					VDDI	VSS	VSS	VSS	VSS	VSS	VSS	VDDI					VSS	MDQ[14]	MDM[1]	MDQ[15]	vss
USB HSDM	USB FSDM	USB AVSF2							VDDE	VSS	VSS	VSS	VSS	VSS	VSS	DDRVDE					DDRVDE	MDQ[12]	MDQ[9]	MDQ[8]	
USB AVSF:		USB AVDF2	VSS	VDDI					VDDE	VDDI	VDDI	VDDE	VDDE	VDDI	VDDI	DDRVDE					DDRVDE	MDQ[11]	MDQ[10]	MDQ[13]	
USB CRYCK	USB MODE	VIN1 [7]	VSS	VDDI																	MDQ[6]	MDM[0]	MDQ[7]	VREF0	vss
VIN1 [6]	VIN1 [5]	VIN1 [4]	VIN1 [3]	VDDE																	VSS	MDQ[4]	MDQ[1]	MDQ[0	
VSS	VIN1 [2]	VIN1 [1]	VIN1 [0]	VDDE																	VSS	MDQ[3]	MDQ[5]	MDQ[2]	
COLK	VDDE	VIN VSYNC1	VIN HSYNC1	VSS																	DDRVDE	MCAS	MRAS	MCKE	VSS
VINFID	1 I2S SDO2	I2S SDI2	I2S WS2	VSS	VDDE	VDDE	VDDI	VDDI	VSS	VSS	VDDE	AD VRL0	AD VRL1	VSS	VSS	VSS	VDDE	VDDE	VDDI	VDDI	DDRVDE	MCS	MWE	MBA[0]	MBA[
I2S SCK2	PWM_01	IDE DIORDY	IDE DINTRQ	IDE DD[15]	IDE DD[11]	IDE DD[7]	IDE DD[3]	IDE DA[2]	IDE XDIOW	MPX MODE_1 [0]	TEST MODE[0]	AD VR0	AD VR1	VDDE	UART SIN2	SD CLK	SD DAT[3]	VPD	INT_A [2]	DDRTYPE	ODTCONT	MA[0]	MA[2]	MA[10]	MA[1
I2S ECLK2	PWM_00	IDE XCBLID	IDE DDMARQ	IDE DD[14]	IDE DD[10]	IDE DD[6]	IDE DD[2]	IDE DA[1]	IDE XDIOR	MPX MODE_1 [1]	PLL BYPASS	AD VIN0	AD VIN1	VDDE	UART SOUT2	SD CMD	SD DAT[2]	USB PRTPWR	I2C SDA0	INT,A [1]	TEST MODE[2]	MA[9]	MA[6]	MA[5]	MA[3
vss	VSS	IDE XDASP	IDE XDDMAC K	IDE DD[13]	IDE DD[9]	IDE DD[5]	IDE DD[1]	IDE DA[0]	IDE XDCS[0]	MPX MODE_5 [0]	BIGEND	AD VRH0	AD VRH1	UART XRTS0	UART XCTS0	UART SOUT1	SD DAT[1]	SD XMCD	I2C SCL0	INT,A [3]	MCKE START	MA[13]	MA[4]	MA[11]	MA[7
VSS	VSS	IDE XIOCS16	IDE DRESET	IDE DD[12]	IDE DD[8]	IDE DD[4]	IDE DD[0]	IDE CSEL	IDE XDCS[1]	MPX MODE_5 [1]	TEST MODE[1]	AD AVD	AD AVS	UART SOUT0	UART SIN0	UART SIN1	SD DAT[0]	SD WP	I2C SCL1	I2C SDA1	INT_A	MA[8]	MA[12]	VSS	VSS

Figure 1-4 MB86R01 pin assignment (pin name)

Table 1-2Pin assignment table

Table	1-2	Pin assig	nmei	nt tal	ble									
Pin NO		PIN NAME	Pin NO		PIN NAME	Pin NO		PIN NAME	Pin NC		PIN NAME	Pin NO		PIN NAME
1	A1	VSS	101	B2	DE0	201	L3	VIN0[3] VINVSYNC0	301	AC9 AC10	IDE_DA[2]	401 402	H22	VSS
2	B1 C1	VSS DOUTB1[2]	102 103	C2 D2	GV0 DOUTB1[5]	202 203	M3 N3	VINVSYNCO	302 303	AC10 AC11	IDE_XDIOW MPX MODE 1[0]	402	G22 F22	VSS VDDI
4	D1	DOUTB1[6]	103	E2	DOUTG1[3]	203	P3	USB_AVSF1	304	AC12	TESTMODE[0]	403	E22	VDDI
5	E1	DOUTG1[4]	105	F2	DOUTG1[7]	205	R3	USB_AVDF1	305	AC13	AD_VR0	405	E21	VDDE
6	F1	DOUTR1[2]	106	G2	DOUTR1[5]	206	T3	USB_AVSF2	306	AC14	AD_VR1	406	E20	VDDE
7	G1 H1	DCLKIN1 VSS	107 108	H2 J2	VDDE GV1	207 208	U3 V3	USB_AVDF2 VIN1[7]	307 308	AC15 AC16	VDDE UART_SIN2	407 408	E19 E18	VSS VSS
9	J1	DCLK01	109	K2	VIN0[6]	209	W3	VIN1[4]	309	AC17	SD_CLK	409	E17	VDDI
10	K1	VIN0[5]	110	L2	VIN0[2]	210	Y3	VIN1[1]	310	AC18	SD_DAT[3]	410	E16	VDDI
11	L1 M1	VIN0[1] CCLK0	111	M2	VDDE VINFID0	211 212	AA3	VINVSYNC1	311 312	AC19	VPD	411 412	E15 E14	VDDE VDDE
12	N1	VSS	112	N2 P2	USB_AVDP	212	AB3 AC3	I2S_SDI2 IDE_DIORDY	312	AC20 AC21	INT_A[2] DDRTYPE	412	E14 E13	VSS
14	P1	USB_AVSP	114	R2	USB_FSDP	214	AD3	IDE_XCBLID	314	AC22	ODTCONT	414	E12	VSS
15	R1	USB_HSDP	115	T2	USB_FSDM	215	AD4	IDE_DDMARQ	315	AC23	MA[0]	415	E11	VDDI
16 17	T1 U1	USB_HSDM USB_AVSF2	116 117	U2 V2	USB_AVSF2 USB_MODE	216 217	AD5 AD6	IDE_DD[14] IDE_DD[10]	316 317	AB23 AA23	MCS MCAS	416 417	E10 E9	VDDI VDDE
18	V1	USB_CRYCK48	118	W2	VIN1[5]	218	AD7	IDE_DD[6]	318	Y23	MDQ[3]	418	E8	VDDE
19	W1	VIN1[6]	119	Y2	VIN1[2]	219	AD8	IDE_DD[2]	319	W23	MDQ[4]	419	E7	VSS
20	Y1	VSS	120	AA2	VDDE	220	AD9	IDE_DA[1]	320	V23	MDM[0]	420	E6	VSS
21 22	AA1 AB1	CCLK1 VINFID1	121 122	AB2 AC2	I2S_SDO2 PWM_01	221 222	AD10 AD11	IDE_XDIOR MPX_MODE_1[1]	321 322	U23 T23	MDQ[11] MDQ[12]	421 422	K10 L10	VDDI VDDI
23	AC1	I2S_SCK2	123	AD2	PWM_00	223	AD12	PLLBYPASS	323	R23	MDQ[14]	423	M10	VDDE
24	AD1	I2S_ECLK2	124	AE2	VSS	224	AD13	AD_VIN0	324	P23	OCD	424	N10	VDDE
25 26	AE1 AF1	VSS VSS	125 126	AE3 AE4	IDE_XDASP IDE_XDDMACK	225 226	AD14 AD15	AD_VIN1 VDDE	325 326	N23 M23	ODT MDQ[19]	425 426	P10 R10	VDDI VDDI
20	AF1 AF2	VSS	120	AE5	IDE_DD[13]	220	AD15	UART_SOUT2	320	L23	MDQ[19] MDQ[20]	420	T10	VDDE
28	AF3	IDE_XIOCS16	128	AE6	IDE_DD[9]	228	AD17	SD_CMD	328	K23	MDM[2]	428	U10	VDDE
29	AF4	IDE_XDRESET	129	AE7	IDE_DD[5]	229	AD18	SD_DAT[2]	329	J23	MDQ[27]	429	U11	VDDI
<u>30</u> 31	AF5 AF6	IDE_DD[12] IDE DD[8]	130 131	AE8 AE9	IDE_DD[1] IDE DA[0]	230 231	AD19 AD20	USB_PRTPWR I2C_SDA0	330 331	H23 G23	MDQ[25] MDQ[30]	430 431	U12 U13	VDDI VDDE
32	AF7	IDE_DD[4]	132	AE10	IDE_XDCS[0]	232	AD21	INT_A[1]	332	F23	MEM_ED[2]	432	U14	VDDE
33	AF8	IDE_DD[0]	133	AE11	MPX_MODE_5[0]	233	AD22	TESTMODE[2]	333	E23	MEM_ED[6]	433	U15	VDDI
34 35	AF9 AF10	IDE_CSEL IDE_XDCS[1]	134 135	AE12 AE13	BIGEND AD_VRH0	234 235	AD23 AD24	MA[9] MA[6]	334 335	D23 D22	MEM_ED[10] MEM_EA[5]	434 435	U16 U17	VDDI DDRVDE
35	AF10 AF11	MPX_MODE_5[1]	135	AE13 AE14	AD_VRH0 AD_VRH1	235	AD24 AC24	MA[6] MA[2]	335	D22 D21	MEM_EA[5] MEM_EA[9]	435	T17	DDRVDE
37	AF12	TESTMODE[1]	137	AE15	UART_XRTS0	237	AB24	MWE	337	D20	MEM_EA[13]	437	R17	VDDI
38	AF13	AD_AVD	138	AE16	UART_XCTS0	238	AA24	MRAS	338	D19	MEM_EA[17]	438	P17	VDDI
39 40	AF14 AF15	AD_AVS UART_SOUT0	139 140	AE17 AE18	UART_SOUT1 SD_DAT[1]	239 240	Y24 W24	MDQ[5] MDQ[1]	339 340	D18 D17	MEM_EA[21] MEM_EA[24]	439 440	N17 M17	DDRVDE DDRVDE
40	AF16	UART_SIN0	141	AE19	SD_XMCD	240	V24	MDQ[7]	341	D16	MEM_XCS[0]	441	L17	VDDI
42	AF17	UART_SIN1	142	AE20	I2C_SCL0	242	U24	MDQ[10]	342	D15	MEM_RDY	442	K17	VDDI
43 44	AF18 AF19	SD_DAT[0] SD_WP	143 144	AE21 AE22	INT_A[3] MCKE_START	243 244	T24 R24	MDQ[9]	343 344	D14 D13	CRIPM1 TDI	443 444	K16 K15	VDDE VDDE
44	AF19 AF20	I2C_SCL1	144	AE22 AE23	MA[13]	244	P24	MDM[1] VSS	344	D13	PLLTDTRST	444	K13	VDDE
46	AF21	I2C_SDA1	146	AE24	MA[4]	246	N24	VSS	346	D11	TRACEDATA[2]	446	K13	VDDI
47	AF22	INT_A[0]	147	AE25	MA[11]	247	M24	MDQ[18]	347	D10	RTCK	447	K12	VDDE
48 49	AF23 AF24	MA[8] MA[12]	148 149	AD25 AC25	MA[5] MA[10]	248 249	L24 K24	MDQ[17] MDQ[23]	348 349	D9 D8	DOUTB0[3] DOUTB0[7]	448 449	K11 L11	VDDE VSS
50	AF25	VSS	150	AB25	MBA[0]	250	J24	MDQ[26]	350	D7	DOUTG0[5]	450	M11	VSS
51	AF26	VSS	151	AA25	MCKE	251	H24	MDQ[28]	351	D6	DOUTR0[3]	451	N11	VSS
52	AE26	MA[7] MA[3]	152	Y25	MDQ[2]	252	G24 F24	MDM[3]	352	D5	DOUTR0[6]	452 453	P11	VSS
53 54	AD26 AC26	MA[3] MA[1]	153 154	W25 V25	MDQ[0] VREF0	253 254	E24	MEM_ED[1] MEM_ED[5]	353 354	E5 F5	VDDE VDDE	453	R11 T11	VSS VSS
55	AB26	MBA[1]	155	U25	MDQ[13]	255	D24	MEM_ED[9]	355	G5	VDDI	455	T12	VSS
56	AA26	VSS	156	T25	MDQ[8]	256	C24	MEM_ED[13]	356	H5	VDDI	456	T13	VSS
57 58	Y26 W26	MDQSN[0] MDQSP[0]	157 158	R25 P25	MDQ[15] DDRVDE	257 258	C23 C22	MEM_EA[2] MEM_EA[6]	357 358	J5 K5	VSS VSS	457 458	T14 T15	VSS VSS
59	V26	VSS	159	N25	DDRVDE	259	C21	MEM_EA[10]	359	L5	VDDE	459	T16	VSS
60	U26	MDQSN[1]	160	M25	MDQ[21]	260	C20	MEM_EA[14]	360	M5	VDDE	460	R16	VSS
61 62	T26 R26	MDQSP[1] VSS	161 162	L25 K25	MDQ[16] VREF1	261 262	C19 C18	MEM_EA[18] MEM_EA[22]	361 362	N5 P5	VDDI USB_AVDB	461 462	P16 N16	VSS VSS
63	P26	MCKN	163	J25	MDQ[29]	263	C17	MEM_XWR[0]	363	R5	USB_EXT12K	463	M16	VSS
64	N26	MCKP	164	H25	MDQ[24]	264	C16	MEM_XCS[2]	364	T5	USB_AVSF2	464	L16	VSS
65	M26	VSS	165	G25	MDQ[31] MEM_ED[0]	265	C15	CRIPM0	365	U5	VDDI	465	L15	VSS
66 67	L26 K26	MDQSN[2] MDQSP[2]	166 167	F25 E25	MEM_ED[4]	266 267	C14 C13	CRIPM2 TCK	366 367	V5 W5	VDDI VDDE	466 467	L14 L13	VSS VSS
68	J26	VSS	168	D25	MEM_ED[8]	268	C12	JTAGSEL	368	Y5	VDDE	468	L12	VSS
69	H26	MDQSN[3]	169	C25	MEM_ED[12]	269	C11	TRACEDATA[1]	369	AA5	VSS	469	M12	VSS
70 71	G26 F26	MDQSP[3] VSS	170 171	B25 B24	MEM_ED[14] MEM_ED[15]	270 271	C10 C9	TRACECLK DOUTB0[2]	370 371	AB5 AB6	VSS VDDE	470 471	N12 P12	VSS VSS
72	E26	MEM_ED[3]	172	B24 B23	MEM_EA[3]	272	C8	DOUTB0[2]	372	AB0 AB7	VDDE	471	R12	VSS
73	D26	MEM_ED[7]	173	B22	MEM_EA[7]	273	C7	DOUTG0[4]	373	AB8	VDDI	473	R13	VSS
74 75	C26 B26	MEM_ED[11] VSS	174 175	B21 B20	MEM_EA[11] MEM_EA[15]	274 275	C6 C5	DOUTR0[2] DOUTR0[5]	374 375	AB9 AB10	VDDI VSS	474 475	R14 R15	VSS VSS
75	A26	VSS	175	B19	MEM_EA[19]	275	C4	DOUTR0[5]	375	AB10 AB11	VSS	475	P15	VSS
77	A25	VSS	177	B18	MEM_EA[23]	277	D4	DOUTB1[3]	377	AB12	VDDE	477	N15	VSS
78 79	A24	MEM_EA[1] MEM_EA[4]	178 179	B17 B16	MEM_XWR[1] MEM_XCS[4]	278 279	E4 F4	DOUTB1[7] DOUTG1[5]	378 379	AB13 AB14	AD_VRL0 AD_VRL1	478 479	M15 M14	VSS VSS
79 80	A23 A22	MEM_EA[4] MEM_EA[8]	1/9	B16 B15	VDDE	279	G4	DOUTGI[5] DOUTR1[3]	379	AB14 AB15	AD_VRL1 VSS	479	M14 M13	VSS
81	A21	MEM_EA[12]	181	B14	CRIPM3	281	H4	DOUTR1[6]	381	AB16	VSS	481	N13	VSS
82	A20	MEM_EA[16]	182	B13	VINITHI	282	J4	HSYNC1	382	AB17	VSS	482	P13	VSS
<u>83</u> 84	A19 A18	MEM_EA[20] VSS	183 184	B12 B11	TMS TRACEDATA[0]	283 284	K4 L4	DE1 VIN0[4]	383 384	AB18 AB19	VDDE VDDE	483 484	P14 N14	VSS VSS
85	A10	MEM_XRD	185	B10	TRACECTL	285	M4	VIN0[4]	385	AB20	VDDI	107		100
86	A16	CLK	186	B9	XTRST	286	N4	VDDI	386	AB21	VDDI			
87	A15	VSS	187	B8	DOUTB0[5]	287	P4	USB_AVSB	387	AB22	DDRVDE			
88 89	A14 A13	TDO PLLVDD	188 189	B7 B6	DOUTG0[3] DOUTG0[7]	288 289	R4 T4	USB_AVSF2 USB_AVSF2	388 389	AA22 Y22	DDRVDE VSS			
90	A13	PLLVSS	190	B5	DOUTR0[4]	289	U4	VSS	390	W22	VSS			
91	A11	XRST	191	B4	VDDE	291	V4	VSS	391	V22	MDQ[6]			
92 93	A10 A9	TRACEDATA[3] XSRST	192 193	B3 C3	HSYNC0 VSYNC0	292 293	W4 Y4	VIN1[3] VIN1[0]	392 393	U22 T22	DDRVDE DDRVDE			
93	A9 A8	DOUTB0[4]	193	D3	DOUTB1[4]	293	AA4	VINT[0] VINHSYNC1	393	R22	VSS			
95	A7	DOUTG0[2]	195	E3	DOUTG1[2]	295	AB4	I2S_WS2	395	P22	VDDI			
96	A6	DOUTG0[6]	196	F3	DOUTG1[6]	296	AC4	IDE_DINTRQ	396	N22	VDDI VSS			
97 98	A5 A4	DCLKIN0 VSS	197 198	G3 H3	DOUTR1[4] DOUTR1[7]	297 298	AC5 AC6	IDE_DD[15] IDE DD[11]	397 398	M22 L22	MDQ[22]			
99	A3	DCLK00	199	J3	VSYNC1	299	AC7	IDE_DD[7]	399	K22	DDRVDE			
100	A2	VSS	200	K3	VIN0[7]	300	AC8	IDE_DD[3]	400	J22	DDRVDE			

1.6. Pin function

External pin function of MB86R01 is described below.

1.6.1. Pin Multiplex

This LSI adopts pin multiplex function, and a part of external pin function is multiplexed.

The external pin function is categorized into following five groups. Each group is able to set the external pin function individually; therefore, the function can be flexibly set depending on the peripheral I/O resource to be used.

- 1. Pin multiplex group #1 (setting pin: MPX_MODE_1[1:0])
 - Mode 0: Pin related to DISPLAY1
 - Mode 1: Pin related to external bus interface
 - Mode 2: Pin related to I2S0, GPIO, and DISPLAY0 data width extension
- 2. Pin multiplex group #2 (setting register: CMUX_MD.MPX_MODE_2[2:0])
 - Mode 0: Pin related to CAP1, CAP0 synchronizing signal, PWM, and I2S2
 - Mode 1: Pin related to CAP1 (NRGB666)
 - Mode 2: Pin related to GPIO, CAN, I2S1, MediaLB, and I2S2
 - Mode 3: Pin related to GPIO, CAN, I2S1, MediaLB, and SPI
 - Mode 4: Pin related to GPIO, CAN, I2S1, MediaLB, and I2S2 (input)
- 3. Pin multiplex group #3 (setting pin: USB_MODE)
 - Mode 0: Pin related to USB2.0 Host
 - Mode 1: Pin related to USB2.0 Function
- 4. Pin multiplex group #4 (setting register: CMUX_MD.MPX_MODE_4[1:0])
 - Mode 0: Pin related to IDE66
 - Mode 1: Pin related to I2S1, CAN, GPIO, and PWM
- 5. Pin multiplex group #5 (setting pin: MPX_MODE_5[1:0])
 - Mode 0: Pin related to ETM
 - Mode 1: Pin related to UART3, UART4, and UART5
 - Mode 2: Pin related to UART3, UART4, and PWM

Note:

- Be sure to set each group of the pin multiplex to any of the modes after power-on.
- Mode should be changed when each pin is not in operation.
- PWM, I2S1, and CAN pins may be duplicated and allocated to external pin depending on group combination; in this case, use either of them. For unused pin, follow the procedure in 1.6.27, unused pin with pin multiplex function in the duplex case.

Pin multiplex group #1 (setting pin: MPX_MODE_1 [1:0])

 Table 1-3
 Pin function of pin multiplex group #1 by mode

		Mode 0	Mode 1		Mod	le 2	
Pin No.	JEDEC	Pin related to DISPLAY1	Pin related to external bus interface	Pin related to I2S0	Pin related to GPIO	Pin related to DISPLAY0	Pin related to external bus interface
198	H3	DOUTR1[7]	MEM_ED[31]	I2S_ECLK0	-	-	-
281	H4	DOUTR1[6]	MEM_ED[30]	I2S_SCK0	-	-	-
106	G2	DOUTR1[5]	MEM_ED[29]	I2S_WS0	-	-	-
197	G3	DOUTR1[4]	MEM_ED[28]	I2S_SDI0	-	-	-
280	G4	DOUTR1[3]	MEM_ED[27]	I2S_SDO0	-	-	-
6	F1	DOUTR1[2]	MEM_ED[26]	-	GPIO_PD[12]	-	-
105	F2	DOUTG1[7]	MEM_ED[25]	-	GPIO_PD[11]	-	-
196	F3	DOUTG1[6]	MEM_ED[24]	-	GPIO_PD[10]	-	-
279	F4	DOUTG1[5]	MEM_ED[23]	-	GPIO_PD[9]	-	-
5	E1	DOUTG1[4]	MEM_ED[22]	-	GPIO_PD[8]	-	-
104	E2	DOUTG1[3]	MEM_ED[21]	-	GPIO_PD[7]	-	-
195	E3	DOUTG1[2]	MEM_ED[20]	-	GPIO_PD[6]	-	-
278	E4	DOUTB1[7]	MEM_ED[19]	-	-	DOUTR0[1]	-
4	D1	DOUTB1[6]	MEM_ED[18]	-	-	DOUTR0[0]	-
103	D2	DOUTB1[5]	MEM_ED[17]	-	-	DOUTG0[1]	-
194	D3	DOUTB1[4]	MEM_ED[16]	-	-	DOUTG0[0]	-
277	D4	DOUTB1[3]	MEM_XWR[3]	-	-	DOUTB0[1]	-
3	C1	DOUTB1[2]	MEM_XWR[2]	-	-	DOUTB0[0]	-
283	K4	DE1	XDACK[7]	-	-	-	XDACK[7]
282	J4	HSYNC1	DREQ[6]	-	-	-	DREQ[6]
199	J3	VSYNC1	XDACK[6]	-	-	-	XDACK[6]
108	J2	GV1	DREQ[7]	-	-	-	DREQ[7]

Pin multiplex group #1 mode setting

This mode is set with external pin, MPX_MODE_1[1:0].

Table 1-4 Mode setting of pin multiplex group #1

MPX_MODE_1[1] pin	MPX_MODE_1[0] pin	Pin multiplex group #1 mode
"L"	"L"	Mode 0
"L"	"H"	Mode 1
"H"	"L"	Mode 2
"H"	"H"	Mode 0

Pin multiplex group #2 (setting register: PIN MPX Select.MPX_MODE_2 [2:0])

Table 1 5	Din function o	f nin multinlav	group #2 by	modo
Table 1-5	Pin function o	i pin munipiex	group #2 by	moue

	Table 1-5 Thi function of phi multiplex group #2 by mode																	
			Mode0		Mode1		Mo	de2				Mode3				М	ode4	
Pin No.	JEDEC	Pin related to CAP0/1	Pin related to PWM	Pin related to I2S2	Pin related to CAP1 (NRGB666)	Pin related to GPIO	Pin related to CAN	Pin related to I2S1/2	Pin related to MediaLB	Pin related to GPIO	Pin related to CAN	Pin related to I2S1	Pin related to MediaLB	Pin related to SPI	Pin related to GPIO	Pin related to CAN	Pin related to I2S1/2	Pin related to MediaLB
208	V3	VIN1[7]	-		RI1[7]	GPIO PD[5]		-	-	GPIO PD[5]		-	-		GPIO PD[5]	•		-
19	W1	VIN1[6]		-	RI1[6]	GPIO PD[4]	-	-	-	GPIO PD[4]	-	-	-		GPIO PD[4]	•		
118	W2	VIN1[5]		-	RI1[5]	-	CAN TX0	-	-	-	CAN TX0	-	-			CAN TX0		
209	W3	VIN1[4]	-		RI1[4]	-	CAN RX0	-	-	-	CAN RX0			-		CAN RX0		-
292	W4	VIN1[3]	-	•	RI1[3]	-	CAN_TX1	-	-	-	CAN_TX1	-	•	-	•	CAN_TX1	•	-
119	Y2	VIN1[2]		-	RI1[2]	-	CAN_RX1	-	-	-	CAN_RX1	-	-	-	-	CAN_RX1	•	-
210	Y3	VIN1[1]		-	GI1[7]	-	-	I2S_SCK1	-	-	•	I2S_SCK1	-	-	-	•	12S_SCK1	-
293	Y4	VIN1[0]		-	GI1[6]	-	-	128_WS1	-	-	•	12S_WS1	-	-	-	•	125_WS1	-
211	AA3	VINVSYNC1		-	VINVSYNC1	-	-	I2S_ECLK1	-	-	•	I2S_ECLK1	-	-	-	•	12S_ECLK1	-
294	AA4	VINHSYNC1		-	VINHSYNC1	-	-	I2S_SDI1	-	-	•	I2S_SDI1	-	-	-	•	I2S_SDI1	-
22	AB1	VINFID1		-	VINFID1	-	-	I2S_SD01	-	-	•	I2S_SDO1	-	-	-	•	125_SD01	-
202	M3	VINVSYNCO		-	GI1[5]	-	-	-	MLB_DATA	-	•	-	MLB_DATA	-	-	•	•	MLB_DATA
203	N3	VINHSYNCO		-	GI1[4]	-	-	-	MLB_SIG	-	•	-	MLB_SIG	-	-	•	•	MLB_SIG
112	N2	VINFID0	•	-	GI1[3]	-	-	-	MLB_CLK	-	•	-	MLB_CLK	-	-	•	•	MLB_CLK
123	AD2		PWM_00	-	GI1[2]	GPIO_PD[3]	•	•	-	GPIO_PD[3]		-	-		GPIO_PD[3]	•	•	-
122	AC2		PWM_01	-	BI1[7]	GPIO_PD[2]	•	•	-	GPIO_PD[2]		-	-		GPIO_PD[2]	•	•	-
121	AB2		•	I2S_SD02	BI1[6]	-	•	I2S_SDO2	-	•		-	-	SPI_DO	GPIO_PD[1]	•	•	-
24	AD1	-		128_ECLK2	BI1[5]			128_ECLK2				•		Reserved (Input/Output)	GPIO_PD[0]			
23	AC1	-		128_SCK2	BI1[4]	-	-	I2S_SCK2	-	•	•	•		SPI_SCK	•	•	128_SCK2	-
295	AB4	-		128_WS2	BI1[3]	-	-	128_WS2	-	•	•	•		SPI_SS	•	•	128_WS2	-
212	AB3			I2S_SDI2	BI1[2]	-	-	128_SD12	-	•	-	•	-	SPI_DI	•	•	I2S_SDI2	-

Pin multiplex group #2 mode setting

This mode is set with MPX_MODE_2 bit (bit 2-0) in the Multiplex mode setting register (CMUX_MD.)

Table 1-6 Mode setting of pin multiplex group #	olex group #2	pin multiplex	Mode setting of	Table 1-6
---	---------------	---------------	-----------------	-----------

MPX_MODE_2 (bit 2-0) of the CMUX_MD register	Pin multiplex group #2 mode
000	Mode 0
001	Mode 1
010	Mode 2
011	Mode 3
100	Mode 4
101 - 110	Reserved
111	(Initial value)

Pin multiplex group #3 (setting pin: USB_MODE)

Ta	ble 1-7	Pin function of pin multiplex group #3 by mode						
Pin No. JEDEC		Mode 0	Mode 1					
1 III 140.	JEDEC	Pin related to USB 2.0 Host	Pin related to USB 2.0 Function					
114	R2	USB_FSDP	USB_FSDP					
115	T2	USB_FSDM	USB_FSDM					
15	R1	USB_HSDP	USB_HSDP					
16	T1	USB_HSDM	USB_HSDM					
18	V1	USB_CRYCK48	USB_CRYCK48					
230	AD19	USB_PRTPWR	USB_PRTPWR					

Pin multiplex group #3 mode setting

This mode is set with external pin, USB_MODE.

Table 1-8 Mode setting of pin multiplex group #3

USB_MODE pin	Pin multiplex group #3 mode
"L"	Mode 0
"H"	Mode 1

(input/output)

_

PWM O1

PWM_O0

Reserved (input)

Reserved (output)

Pin multiplex group #4 (setting register: PIN_MPX_Select.MPX_MODE_4 [1:0])

Ta	ble 1-9	Pin function of	f pin multiplex group #4 by mode							
		Mode 0			Mode 1					
Pin No.	JEDEC	Pin related to	Pin related to	Pin related to	Pin related to	Pin related to	Unused pin			
		IDE	I2S1	CAN	GPIO	PWM	(input/output)			
29	AF4	IDE_XDRESET	-	-	-	-	Reserved (output)			
28	AF3	IDE_XIOCS16	I2S_SDI1	-	-	-	-			
125	AE3	IDE_XDASP	I2S_WS1	-	-	-	-			
215	AD4	IDE_DDMARQ	I2S_ECLK1	-	-	-	-			
296	AC4	IDE_DINTRQ	I2S_SDO1	-	-	-	-			
214	AD3	IDE_XCBLID	I2S_SCK1	-	-	-	-			
297	AC5	IDE_DD[15]	-	CAN_TX0	-	-	-			
216	AD5	IDE_DD[14]	-	CAN_RX0	-	-	-			
127	AE5	IDE_DD[13]	-	CAN_TX1	-	-	-			
30	AF5	IDE_DD[12]	-	CAN_RX1	-	-	-			
298	AC6	IDE_DD[11]	-	-	GPIO_PD[23]	-	-			
217	AD6	IDE_DD[10]	-	-	GPIO_PD[22]	-	-			
128	AE6	IDE_DD[9]	-	-	GPIO_PD[21]	-	-			
31	AF6	IDE_DD[8]	-	-	GPIO_PD[20]	-	-			
299	AC7	IDE_DD[7]	-	-	GPIO_PD[19]	-	-			
218	AD7	IDE_DD[6]	-	-	GPIO_PD[18]	-	-			
129	AE7	IDE_DD[5]	-	-	GPIO_PD[17]	-	-			
32	AF7	IDE_DD[4]	-	-	GPIO_PD[16]	-	-			
300	AC8	IDE_DD[3]	-	-	GPIO_PD[15]	-	-			
219	AD8	IDE_DD[2]	-	-	GPIO_PD[14]	-	-			
130	AE8	IDE_DD[1]	-	-	GPIO_PD[13]	-	-			
33	AF8	IDE_DD[0]	-	-	-	-	Reserved (input/output)			

Table 1-9 Pin function of pin multiplex group #4 by mode

Pin multiplex group #4 mode setting

IDE DIORDY

IDE_DA[2]

IDE DA[1]

IDE_DA[0]

IDE_XDCS[1]

IDE_XDCS[0]

IDE_XDIOR

IDE_XDIOW

IDE_XDDMAC

IDE_CSEL

K

213

301

220

131

35 132

221

302

34

126

AC3

AC9

AD9

AE9

AF10

AE10

AD10

AC10

AF9

AE4

This mode is set with MPX_MODE_4 bit (bit 5-4) in the Multiplex mode setting register (CMUX_MD.)

Table 1-10	Mode	setting	of nin	multipley	groun #4
1able 1-10	Moue	setting	or pm	пипирієх	group #4

MPX_MODE_4 (Bit 5-4) of the CMUX_MD register	Pin multiplex group #4 mode
00	Mode 0
01	Mode 1
10	Reserved
11	(Initial value)

Pin multiplex group #5 (setting pin: MPX_MODE_5 [1:0])

Table 1-11 Pin function of pin multiplex group #5 by mode

		<u>^</u>	Mada 1	Mode 2			
		Mode 0	Mode 1	Nide 2			
Pin No.	JEDEC	Pin related to ETM	Pin related to	Pin related to UART3/4	Pin related to PWM		
			UART3/4/5				
270	C10	TRACECLK	UART_SIN3	UART_SIN3	-		
185	B10	TRACECTL	UART_SOUT3	UART_SOUT3	-		
92	A10	TRACEDATA[3]	UART_SIN4	UART_SIN4	-		
346	D11	TRACEDATA[2]	UART_SOUT4	UART_SOUT4	-		
269	C11	TRACEDATA[1]	UART_SIN5	-	PWM_O1		
184	B11	TRACEDATA[0]	UART_SOUT5	-	PWM_O0		

Pin multiplex group #5 mode setting

This mode is set with external pin, MPX_MODE_5[1:0].

MPX_MODE_5[1] pin	MPX_MODE_5[0] pin	Pin multiplex group #5 mode
"L"	"L"	Mode 0
"L"	"H"	Mode 1
"H"	"L"	Mode 2
"H"	"H"	Mode 0

1.6.2. Pin function

Format

Pin function list is shown in the following format.

Meaning of item and sign

Pin name

Name of external pin.

I/O

Input/Output signal's distinction based on this LSI.

- I: Pin that can be used as input
- O: Pin that can be used as output
- IO: Pin that can be used as input and output (interactive pin)

Polarity

Active polarity of external pin's input/output signals

- P: "H" active pin (positive logic)
- N: "L" active pin (negative logic)
- PN: "H" and "L" active pins

Analog/Digital

Signal type of external pin

- A: Analog signal
- D: Digital signal

Туре

Input/Output circuit type of external pin.

- CLK:
- POD: Pseudo Open Drain
- PU: Pull Up
- PD: Pull Down
- ST: Schmitt Type

• Tri: Tri-state

Pin status after reset

Pin status after external pin reset

- H: "H" level
- L: "L" level
- HiZ: High impedance
- X: "H" level or "L" level
- A: Clock output

Description

Outline of external pin function

1.6.3. External bus interface related pin

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
MEM_XCS[4]	0	N	D	-	Н	Chip select 4
MEM_XCS[2]	0	Ν	D	-	Н	Chip select 2
MEM_XCS[0]	0	Ν	D	-	Н	Chip select 0
MEM_XRD	0	Ν	D	-	Н	Read strobe
MEM_XWR[3:2]	0	Ν	D	-	Н	Write strobe MEM_XWR[3] \rightarrow MEM_ED[31:24], MEM_XWR[2] \rightarrow MEM_ED[23:16] (optional pin)
MEM_XWR[1:0]	0	Ν	D	-	Н	Write strobe MEM_XWR[1] \rightarrow MEM_ED[15:8] MEM_XWR[0] \rightarrow MEM_ED[7:0]
MEM_RDY	Ι	Р	D	-	-	Ready input for slow device
MEM_EA[24:1]	0	-	D	-	L	Address bus
MEM_ED[31:16]	IO	-	D	-	HiZ	Bi-directional data bus (optional pin)
MEM_ED[15:0]	IO	-	D	-	HiZ	Bi-directional data bus
DREQ[7:6]	Ι	-	D	-	-	External DMA request
XDACK[7:6]	0	Р	D	-	L	External DMA acknowledge

Table 1-13 External bus interface related pin's function

1.6.4. IDE66 related pin

Table 1-14	IDE66	related	pin	function	
1able 1-14	IDE00	Telateu	hш	Tunction	

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
IDE_XDRESET	0	Ν	D	-	Н	IDE reset
IDE_DD[15:0]	IO	-	D	PD	L	IDE device data
IDE_XDCS[1:0]	0	Ν	D	-	Н	IDE chip select
IDE_DA[2:0]	0	Р	D	-	L	IDE device address
IDE_XDIOR	0	Ν	D	-	Н	IDE device I/O read
IDE_XDIOW	0	Ν	D	-	Н	IDE device I/O write
IDE_DIORDY	Ι	Р	D	-	-	IDE I/O channel ready
IDE_DDMARQ	Ι	Р	D	-	-	IDE device DMA request
IDE_XDDMACK	0	Ν	D	-	Н	IDE device DMA acknowledge
IDE_CSEL	0	Р	D	-	L	IDE cable select
IDE_XIOCS16	Ι	Ν	D	-	-	IDE 16 bit I/O
IDE_XDASP	Ι	Ν	D	PD	-	IDE device active
IDE_DINTRQ	Ι	Р	D	PD	-	IDE Interrupt
IDE_XCBLID	Ι	Ν	D	PD	-	IDE cable ID

1.6.5. SD memory controller related pin

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
SD_CLK	0	Ν	D	-	L	Media clock
SD_CMD	IO	-	D	-	HiZ	Media command
SD_DAT[3:0]	IO	-	D	-	HiZ	Media data
SD_WP	Ι	Р	D	-	-	Media write protection
SD_XMCD	Ι	Ν	D	-	-	Media card detection

 Table 1-15
 SD memory controller related pin's function

1.6.6. USB 2.0 Host/Function related pin

Table 1-16	USB 2.0 Host/Function related pin's function
-------------------	--

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
USB_FSDP	IO	-	А	-	-	D+ for FS
USB_FSDM	IO	-	А	-	-	D- for FS
USB_HSDP	IO	-	А	-	-	D+ for HS
USB_HSDM	IO	-	А	-	-	D- for HS
USB_CRYCK48	Ι	-	D	CLK	-	Clock used for USB communication
USB_PRTPWR	0	-	D	-	L	USB port power control
USB_EXT12K	0	-	А	-	-	External resistance pin This should be connected to USB_AVSB through $12k\Omega$ resistance.
USB_AVSP	Ι	-	А	-	-	PLL ground
USB_AVSB	Ι	-	А	-	-	Reference voltage ground
USB_AVDP	Ι	-	А	-	-	PLL power supply
USB_AVDB	Ι	-	А	-	-	Reference voltage power supply
USB_AVSF1	Ι	-	А	-	-	Driver/Receiver ground 1
USB_AVDF1	Ι	-	А	-	-	Driver/Receiver power supply 1
USB_AVSF2	Ι	-	А	-	-	Driver/Receiver ground 2
USB_AVDF2	Ι	-	А	-	-	Driver/Receiver power supply 2

1.6.7. External interrupt controller related pin

 Table 1-17
 External interrupt controller related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
INT_A[3:0]	Ι	PN	D	-	-	Asynchronous external interrupt requests

1.6.8. UART related pin

	10 Offici feliced plin 5 function								
Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation			
UART_SIN0	Ι	Р	D	-	-	Input data signal			
UART_SOUT0	0	Р	D	-	Н	Output data signal			
UART_XCTS0	Ι	Ν	D	-	-	Clear to send			
UART_XRTS0	0	Ν	D	-	Н	Request to send			
UART_SIN1	Ι	Р	D	-	-	Input data signal			
UART_SOUT1	0	Р	D	-	Н	Output data signal			
UART_SIN2	Ι	Р	D	-	-	Input data signal			
UART_SOUT2	0	Р	D	-	Н	Output data signal			
UART_SIN3	Ι	Р	D	-	-	Input data signal (optional)			
UART_SOUT3	0	Р	D	-	Н	Output data signal (optional)			
UART_SIN4	Ι	Р	D	-	-	Input data signal (optional)			
UART_SOUT4	0	Р	D	-	Н	Output data signal (optional)			
UART_SIN5	Ι	Р	D	-	-	Input data signal (optional)			
UART_SOUT5	0	Р	D	-	Н	Output data signal (optional)			

Table 1-18 UART related pin's function

1.6.9. CAN related pin

 Table 1-19
 CAN related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
CAN_TX0	0	-	D	PD	Н	Transmission (optional)
CAN_RX0	Ι	-	D	PD	-	Reception (optional)
CAN_TX1	0	-	D	PD	Н	Transmission (optional)
CAN_RX1	Ι	-	D	PD	-	Reception (optional)

1.6.10. I2S related pin

1able 1-20 12									
Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation			
I2S_ECLK0	Ι	-	D	-	-	External clock (optional)			
I2S_SCK0	IO	-	D	-	HiZ	Clock (optional)			
I2S_WS0	IO	PN	D	-	HiZ	Sync (optional)			
I2S_SDI0	Ι	Р	D	-	-	Input data signal (optional)			
I2S_SDO0	0	Р	D	-	Hiz	Output data signal (optional)			
I2S_ECLK1	Ι	-	D	-	-	External clock (optional)			
I2S_SCK1	IO	-	D	PD	L	Clock (optional)			
I2S_WS1	IO	PN	D	PD	L	Sync(optional)			
I2S_SDI1	Ι	Р	D	-	-	Input data signal (optional)			
I2S_SDO1	0	Р	D	PD	L	Output data signal (optional)			
I2S_ECLK2	Ι	-	D	PD	-	External clock (optional)			
I2S_SCK2	IO	-	D	PD	L	Clock (optional)			
I2S_WS2	IO	PN	D	PD	L	Sync (optional)			
I2S_SDI2	Ι	Р	D	-	-	Input data signal (optional)			
I2S_SDO2	0	Р	D	PD	L	Output data signal (optional)			

Table 1-20 I2S related pin's function

1.6.11. I²C related pin

Table 1-21I²C related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
I2C_SCL0	ΙΟ	-	D	POD	HiZ	I2C clock
I2C_SDA0	IO	-	D	POD	HiZ	I2C data
I2C_SCL1	IO	-	D	POD	HiZ	I2C clock
I2C_SDA1	IO	-	D	POD	HiZ	I2C data

1.6.12. SPI related pin

Table 1-22SPI related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
SPI_DO	0	Р	D	PD	L	Serial data output (optional)
SPI_DI	Ι	Р	D	-	-	Serial data input (optional)
SPI_SCK	0	-	D	PD	L	Serial clock (optional)
SPI_SS	0	PN	D	PD	L	Slave select (optional)

1.6.13. PWM related pin

Table 1-23	PWMrelated	pin's function
	I TTILL CIUCCU	pin 5 ranceion

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
PWM_O0	0	-	D	PD (*1)	L	PWM out 0 (optional)
PWM_O1	0	-	D	PD (*1)	L	PWM out 1 (optional)

*1: Only PWM pin of the pin multiplex group #2 is with pull-down resistance

1.6.14. A/D converter related pin

Table 1-24 A/D converter related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
AD_VIN0	Ι	-	А	-	-	A/D analog input
AD_VRH0	Ι	-	А	-	-	Reference voltage "H" input
AD_VRL0	Ι	-	А	-	-	Reference voltage "L" input
AD_AVD	Ι	-	А	-	-	Analog power supply
AD_VR0	0	-	А	-	-	Reference output
AD_VIN1	Ι	-	А	-	-	A/D analog input
AD_VRH1	Ι	-	А	-	-	Reference voltage "H" input
AD_VRL1	Ι	-	А	-	-	Reference voltage "L" input
AD_AVS	Ι	-	А	-	-	Analog ground
AD_VR1	0	-	А	-	-	Reference output

1.6.15. DDR2 related pin

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation
MA[13:0]	0	Р	D	-	Н	Address
MBA[1:0]	0	Р	D	-	Н	Bank address
MDQ[31:0]	IO	Р	D	-	Н	Data (*5)
MDM[3:0]	0	Р	D	-	HiZ	Data mask (*6)
MDQSP[3:0]	IO	Р	D	-	HiZ	Data strobe (*5)
MDQSN[3:0]	IO	N	D	-	HiZ	Data strobe (*5)
МСКР	0	Р	D	CLK	L	Clock output
MCKN	0	N	D	CLK	Н	Clock output
MCKE	0	Р	D	-	L	Clock enable
MCS	0	Ν	D	-	L	Chip select
MRAS	0	N	D	-	Н	Row address strobe
MCAS	0	Ν	D	-	Н	Column address strobe
MWE	0	Ν	D	-	Н	Write enable
DDRVDE	Ι	-	А	-	-	SSTL_18 1.8V power supply
VREF1	Ι	-	А	-	-	Reference voltage input (DDRVDE/2)
VREF0	Ι	-	А	-	-	Reference voltage input (DDRVDE/2)
OCD	Ι	-	А	-	-	Off chip driver reference voltage input (*1)
ODT	Ι	-	А	-	-	On-die termination reference voltage input (*2)
ODTCONT	0	Р	D	-	L	On-die termination control (*3)
MCKE_START	Ι	Р	D	-	-	Set a state of MCKE in reset 0: Low (*4) 1: High (reserved)
DDRTYPE	Ι	Р	D	-	-	Pull up pin to VDDE via high resistance

Table 1-25 DDR2 related pin's function

*1: Pull up the pin to DDRVDE (1.8V power supply), via 200 Ω resistance.

*2: PCB impedance $Z = 100\Omega$ or 50Ω : Pull up pin to DDRVDE (1.8V power supply), via 180 Ω resistance.

PCB impedance $Z = 150\Omega$ or 75 Ω : Pull up pin to DDRVDE (1.8V power supply), via 240 Ω resistance.

*3: It connects it with the ODT pin of DDR2SDRAM.

*4: Pull down pin to VSS, via high resistance.

*5: This is process of unused pin at 16 bit mode. Pull down the pin to VSS via high resistance. Unused pins at 16 bit mode are as follows:

"MDQ[31:16], MDQSP[3:2], MDQSN[3:2]"

*6: This is process of MDM[3:2] at 16 bit mode. Be sure to open this pin.

1.6.16. DISPLAY related pin

Table 1-20 DISPLAT related pill's function									
Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Explanation			
HSYNC0	Ю	-	D	-	HiZ	Video output interface horizontal sync output Horizontal sync input in external sync mode			
VSYNC0	ΙΟ	-	D	-	HiZ	Video output interface vertical sync output Vertical sync input in external sync mode			
GV0	0	-	D	-	L	Video output interface graphics/video switch			
DCLKIN0	Ι	-	D	CLK	-	Video output interface dot clock input			
DCLKO0	0	-	D	CLK	X	Video output interface dot clock output			
DE0	0	-	D	-	Х	DE/CSYNC			
DOUTR0[7:2]	0	-	D	-	X	Digital RGB output0 DataR[7:2]			
DOUTR0[1:0]	0	-	D	-	Х	Digital RGB output0 DataR[1:0] (optional)			
DOUTG0[7:2]	0	-	D	-	Х	Digital RGB output0 DataG[7:2]			
DOUTG0[1:0]	0	-	D	-	Х	Digital RGB output0 DataG[1:0] (optional)			
DOUTB0[7:2]	0	-	D	-	Х	Digital RGB output0 DataB[7:2]			
DOUTB0[1:0]	0	-	D	-	Х	Digital RGB output0 DataB[1:0] (optional)			
HSYNC1	IO	-	D	-	HiZ	Video output interface horizontal sync output Horizontal sync input in external sync mode			
VSYNC1	IO	-	D	-	HiZ	Video output interface vertical sync output Vertical sync input in external sync mode			
GV1	0	-	D	-	L	Video output interface graphics/video switch			
DCLKIN1	Ι	-	D	CLK	-	Video output interface dot clock input			
DCLK01	0	-	D	CLK	Х	Video output interface dot clock output			
DE1	0	-	D	-	Х	DE/CSYNC			
DOUTR1[7:2]	0	-	D	-	Х	Digital RGB output1 DataR[7:2]			
DOUTG1[7:2]	0	-	D	-	Х	Digital RGB output1 DataG[7:2]			
DOUTB1[7:2]	0	-	D	-	Х	Digital RGB output1 DataB[7:2]			

Table 1-26 DISPLAY related pin's function

1.6.17. Video capture related pin

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
VIN0[7:0]	Ι	-	D	-	-	Video capture Data[7:0]
VINVSYNC0	Ι	-	D	PD	-	Video capture vertical sync input
VINHSYNC0	Ι	-	D	PD	-	Video capture horizontal sync input
VINFID0	Ι	-	D	-	-	Video input field identification signal 0 in odd field
CCLK0	Ι	-	D	CLK	-	Video capture input clock
VIN1[7:0]	Ι	-	D	PD	-	Video capture Data[7:0]
VINVSYNC1	Ι	-	D	-	-	Video capture vertical sync input
VINHSYNC1	Ι	-	D	-	-	Video capture horizontal sync input
VINFID1	Ι	-	D	PD	-	Video input field identification signal 0 in odd field
CCLK1	Ι	-	D	CLK	-	Video capture input clock
RI1[7:2]	Ι	-	D	PD	-	NRGB666 capture DataR[7:2] (optional)
GI1[7:2]	Ι	-	D	PD (*1)	-	NRGB666 capture DataG[7:2] (optional)
BI1[7:2]	Ι	-	D	PD (*2)	-	NRGB666 capture DataB[7:2] (optional)

Table 1-27 Video capture related pin's function

*1: GI1[3] is not applicable. *2: BI1[2] is not applicable.

System related pin 1.6.18.

Table 1-28 System related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
CLK	Ι	-	D	CLK	-	Input clock
XRST	Ι	Ν	D	ST	-	System reset
CRIPM[3:0]	Ι	-	D	-	-	PLLMODE setting
VINITHI	Ι	-	D	-	-	Boot high address
PLLBYPASS	Ι	-	D	-	-	PLL bypass mode setting
BIGEND	Ι	-	D	-	-	LSI endian setting Low: Little endian High: Big endian
PLLVSS	Ι	-	А	-	-	PLL ground
PLLTDTRST	Ι	-	D	-	-	Test pin Pull up the pin to VDDE, via high resistance
PLLVDD	Ι	-	А	-	-	PLL power supply

1.6.19. JTAG related pin

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
ТСК	Ι	-	D	ST, PU	-	Test clock
XTRST	Ι	N	D	ST, PU	-	Test reset
TMS	Ι	Ν	D	PU	-	Test mode
TDI	Ι	-	D	PU	-	Test data input
TDO	0	-	D	Tri	HiZ	Test data output

Table 1-29 JTAG related pin's function

1.6.20. ICE related pin

Table 1-30ICE related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
RTCK	0	-	D	-	Н	Return test clock
XSRST	ΙΟ	Ν	D	ST, PU	Н	System reset

1.6.21. Multiplex setting related pin

 Table 1-31
 Multiplex setting related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
JTAGSEL	Ι	-	D	-		JTAG selection 1: DFT, 0: Normal Pull it down to VSS, via high resistance
MPX_MODE_5[1:0]	Ι	-	D	-	-	External pin multiplex mode 5
MPX_MODE_1[1:0]	Ι	-	D	-	-	External pin multiplex mode 1
USB_MODE	Ι	-	D	-		USB selection 0: Host, 1: Function
TESTMODE[2:0]	Ι	-	D	-	-	Test mode selection pin Pull it down to VSS, via high resistance
VPD	Ι	-	D	-	-	Test mode selection pin Pull it down to VSS, via high resistance

1.6.22. ETM related pin

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
TRACECLK	0	-	D	-	L	Exported clock for TRACEDATA[3:0] and TRACECTL They are valid on bath edges of TRACECLK for max. integrity.
TRACECTL	0	-	D	-	Н	Trace control signal used by the trace tool such as RealView supplied by ARM Limited.
TRACEDATA[3:0]	0	-	D	-	LHHH	Trace data used by the trace tool such as RealView supplied by ARM Limited.

Table 1-32ETM related pin's function

1.6.23. Power supply related pin

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
VSS	Ι	-	D	-	-	Ground
VDDE	Ι	-	D	-	-	External pin power supply
VDDI	Ι	-	D	-	-	Internal power supply

Table 1-33Power supply related pin's function

1.6.24. MediaLB related pin

 Table 1-34
 MediaLB related pin's function

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
MLB_DATA	IO	Р	D	PD	HiZ	Data (optional) (*1)
MLB_SIG	IO	Р	D	PD	HiZ	Control (optional) (*1)
MLB_CLK	Ι	-	D	CLK	-	Clock (optional) (*1)

*1: MediaLB pin of this LSI uses 3.3[V] I/O; therefore, when connecting bus's voltage is not 3.3[V], level conversion at external side is needed.

1.6.25. GPIO related pin

Pin name	I/O	Polarity	Analog /Digital	Туре	Status of pin after reset	Description
GPIO_PD[23:0]	IO	-	D	PD (*1)	HiZ	General purpose I/O port (optional)

*1: GPIO_PD[12:6] is not applicable.

1.6.26. Unused pin

Proceed following processes for unused pin.

Table 1-36 ME	86R01 unused	pin's	process
---------------	--------------	-------	---------

Pin No.	JEDEC	Pin name	Process
3	C1	DOUTB1[2], MEM_XWR[2], DOUTB0[0]	Pull up to VDDE or pull down to VSS through high
4	D1	DOUTB1[6], MEM_ED[18], DOUTR0[0]	resistance.
5	E1	DOUTG1[4], MEM_ED[22], GPIO_PD[8]	
6	F1	DOUTR1[2], MEM_ED[26], GPIO_PD[12]	
7	G1	DCLKIN1	
9	J1	DCLK01	Keep the pin open.
10	K1	VIN0[5]	Pull up to VDDE or pull down to VSS through high resistance.
11	L1	VIN0[1]	
12	M1	CCLK0	
14	P1	USB_AVSP	Connect to VSS.
15	R1	USB_HSDP	Pull down to VSS through $10k\Omega$ resistance.
16	T1	USB_HSDM	
17	U1	USB_AVSF2	Connect to VSS.
18	V1	USB_CRYCK48	Pull up to VDDE or pull down to VSS through high resistance.
19	W1	VIN1[6], RI1[6], GPIO_PD[4]	Keep the pin open.
21	AA1	CCLK1	Pull up to VDDE or pull down to VSS through high resistance.
22	AB1	VINFID1, I2S_SDO1	Keep the pin open.
23	AC1	I2S_SCK2, BI1[4], SPI_SCK	
24	AD1	I2S_ECLK2, BI1[5], Reserved (input/output), GPIO_PD[0]	
28	AF3	IDE_XIOCS16, I2S_SDI1	Pull up to VDDE or pull down to VSS through high resistance.
29	AF4	IDE_XDRESET, Reserved (output)	Keep the pin open.
30	AF5	IDE_DD[12], CAN_RX1	
31	AF6	IDE_DD[8], GPIO_PD[20]	
32	AF7	IDE_DD[4], GPIO_PD[16]	
33	AF8	IDE_DD[0], Reserved (input/output)	
34	AF9	IDE_CSEL, Reserved (output)	
35		IDE_XDCS[1], Reserved (output)	
36		MPX_MODE_5[1]	Pull up to VDDE or pull down to VSS through high resistance.
38		AD_AVD	Connect to VSS.
39	AF14	AD_AVS	
40		UART_SOUT0	Keep the pin open.
41		UART_SIN0	Pull up to VDDE or pull down to VSS through high resistance.
42		UART_SIN1	
43		SD_DAT[0]	
44	AF19	SD_WP	

FUJITSU

Pin No.	JEDEC	Pin name	Process
45	AF20	I2C_SCL1	Pull up to VDDE or pull down to VSS through high resistance.
46	AF21	I2C_SDA1	
47	AF22	INT_A[0]	
48	AF23	MA[8]	Keep the pin open.
49	AF24	MA[12]	
52	AE26	MA[7]	
53	AD26	MA[3]	
54	AC26	MA[1]	
55	AB26	MBA[1]	
57	Y26	MDQSN[0]	Pull down to VSS through high resistance.
58	W26	MDQSP[0]	
60	U26	MDQSN[1]	
61	T26	MDQSP[1]	
63	P26	MCKN	Keep the pin open.
64	N26	МСКР	
66	L26	MDQSN[2]	Pull down to VSS through high resistance.
67	K26	MDQSP[2]	
69	H26	MDQSN[3]	
70	G26	MDQSP[3]	
72	E26	MEM_ED[3]	Pull up to VDDE or pull down to VSS through high resistance.
73	D26	MEM_ED[7]	
74	C26	MEM_ED[11]	
78	A24	MEM_EA[1]	
79	A23	MEM_EA[4]	
80	A22	MEM_EA[8]	
81	A21	MEM_EA[12]	
82	A20	MEM_EA[16]	
83	A19	MEM_EA[20]	
85	A17	MEM_XRD	
88	A14	TDO	Keep the pin open.
92	A10	TRACEDATA[3], UART_SIN4	Pull up to VDDE or pull down to VSS through high resistance.
94	A8	DOUTB0[4]	Keep the pin open.
95	A7	DOUTG0[2]	
96	A6	DOUTG0[6]]
97	A5	DCLKIN0	Pull up to VDDE or pull down to VSS through high resistance.
99	A3	DCLKO0	Keep the pin open.
101	B2	DE0	
102	C2	GV0	
103	D2	DOUTB1[5], MEM_ED[17], DOUTG0[1]	Pull up to VDDE or pull down to VSS through high resistance.
104	E2	DOUTG1[3], MEM_ED[21], GPIO_PD[7]	
105	F2	DOUTG1[7], MEM_ED[25], GPIO_PD[11]	

FUJITSU

Pin No.	JEDEC	Pin name	Process
106	G2	DOUTR1[5], MEM_ED[29], I2S_WS0	Pull up to VDDE or pull down to VSS through high resistance.
108	J2	GV1, DREQ[7]	_
109	K2	VIN0[6]	-
110	L2	VIN0[2]	-
112	N2	VINFID0, GI1[3], MLB_CLK	-
113	P2	USB_AVDP	Connect to VDDI.
114	R2	USB_FSDP	Pull down to VSS through $10k\Omega$ resistance.
115	T2	USB_FSDM	_
116	U2	USB_AVSF2	Connect to VSS.
117	V2	USB_MODE	Pull up to VDDE or pull down to VSS through high resistance.
118	W2	VIN1[5], RI1[5], CAN_TX0	Keep the pin open.
119	Y2	VIN1[2], RI1[2], CAN_RX1	
121	AB2	I2S_SDO2, BI1[6], SPI_DO, GPIO_PD[1]	
122	AC2	PWM_O1, BI1[7], GPIO_PD[2]	
123	AD2	PWM_00, GI1[2], GPI0_PD[3]	
125	AE3	IDE_XDASP, I2S_WS1	
126	AE4	IDE_XDDMACK, Reserved (output)	
127	AE5	IDE_DD[13], CAN_TX1	
128	AE6	IDE_DD[9], GPIO_PD[21]	
129	AE7	IDE_DD[5], GPIO_PD[17]	
130	AE8	IDE_DD[1], GPIO_PD[13]	
131	AE9	IDE_DA[0], PWM_O0	
132	AE10	IDE_XDCS[0], Reserved (output)	
133	AE11	MPX_MODE_5[0]	Pull up to VDDE or pull down to VSS through high resistance.
135	AE13	AD_VRH0	Connect to VSS.
136	AE14	AD_VRH1	
137	AE15	UART_XRTS0	Keep the pin open.
138	AE16	UART_XCTS0	Pull up to VDDE or pull down to VSS through high resistance.
139	AE17	UART_SOUT1	Keep the pin open.
140	AE18	SD_DAT[1]	Pull up to VDDE or pull down to VSS through high resistance.
141		SD_XMCD	
142		I2C_SCL0	
143	AE21	INT_A[3]	
144	AE22	MCKE_START	Pull down to VSS through high resistance.
145	AE23	MA[13]	Keep the pin open.
146	AE24	MA[4]	
147		MA[11]	
148		MA[5]	
149		MA[10]	
150		MBA[0]	
151	AA25	MCKE	

FUĴĨTSU

Pin No.	JEDEC	Pin name	Process
152	Y25	MDQ[2]	Pull down to VSS through high resistance.
153	W25	MDQ[0]	
154	V25	VREF0	Connect to DDRVDE/2[V]Reference voltage.
155	U25	MDQ[13]	Pull down to VSS through high resistance.
156	T25	MDQ[8]	
157	R25	MDQ[15]	
160	M25	MDQ[21]	
161	L25	MDQ[16]	
162	K25	VREF1	Connect to DDRVDE/2[V]Reference voltage.
163	J25	MDQ[29]	Pull down to VSS through high resistance.
164	H25	MDQ[24]	
165	G25	MDQ[31]	
166	F25	MEM_ED[0]	Pull up to VDDE or pull down to VSS through high
167	E25	MEM_ED[4]	resistance.
168	D25	MEM_ED[8]	
169	C25	MEM_ED[12]	
170	B25	MEM_ED[14]	
171	B24	MEM_ED[15]	-
172	B23	MEM_EA[3]	
173	B22	MEM_EA[7]	
174	B21	MEM_EA[11]	-
175	B20	MEM_EA[15]	-
176	B19	MEM_EA[19]	
177	B18	MEM_EA[23]	
178	B17	MEM_XWR[1]	-
179	B16	MEM XCS[4]	-
183	B12	TMS	
184	B11	TRACEDATA[0], UART_SOUT5, PWM_O0	
185	B10	TRACECTL, UART SOUT3	Keep the pin open.
187	B8	DOUTB0[5]	
188	B7	DOUTG0[3]	
189	B6	DOUTG0[7]	
190	B5	DOUTR0[4]	
192	B3	HSYNC0	Pull up to VDDE or pull down to VSS through high
193	C3	VSYNC0	resistance.
194	D3	DOUTB1[4], MEM_ED[16], DOUTG0[0]	
195	E3		
197	G3		
198	H3		
199			
196 197 198	E3 F3 G3	DOUTG1[2], MEM_ED[20], GPIO_PD[6] DOUTG1[6], MEM_ED[24], GPIO_PD[10] DOUTR1[4], MEM_ED[28], I2S_SDI0 DOUTR1[7], MEM_ED[31], I2S_ECLK0 VSYNC1, XDACK[6] VIN0[7] VIN0[3]	

Pin No.	JEDEC	Pin name	Process
202	M3	VINVSYNC0, GI1[5], MLB_DATA	Keep the pin open.
203	N3	VINHSYNC0, GI1[4], MLB_SIG	
204	P3	USB_AVSF1	Connect to VSS.
205	R3	USB_AVDF1	Connect to VDDE.
206	T3	USB_AVSF2	Connect to VSS.
207	U3	USB_AVDF2	Connect to VDDI.
208	V3	VIN1[7], RI1[7], GPIO_PD[5]	Keep the pin open.
209	W3	VIN1[4], RI1[4], CAN_RX0	
210	Y3	VIN1[1], GI1[7], I2S_SCK1	
211	AA3	VINVSYNC1, I2S_ECLK1	Pull up to VDDE or pull down to VSS through high resistance.
212	AB3	I2S_SDI2, BI1[2], SPI_DI	
213	AC3	IDE_DIORDY, Reserved (input)	
214	AD3	IDE_XCBLID, I2S_SCK1	Keep the pin open.
215	AD4	IDE_DDMARQ, I2S_ECLK1	Pull up to VDDE or pull down to VSS through high resistance.
216	AD5	IDE_DD[14], CAN_RX0	Keep the pin open.
217	AD6	IDE_DD[10], GPIO_PD[22]	
218	AD7	IDE_DD[6], GPIO_PD[18]	
219	AD8	IDE_DD[2], GPIO_PD[14]	
220	AD9	IDE_DA[1], PWM_O1	
221	AD10	IDE_XDIOR, Reserved (output)	
222	AD11	MPX_MODE_1[1]	Pull up to VDDE or pull down to VSS through high resistance.
224	AD13	AD_VIN0	Connect to VSS.
225	AD14	AD_VIN1	
227	AD16	UART_SOUT2	Keep the pin open.
228	AD17	SD_CMD	Pull up to VDDE or pull down to VSS through high resistance.
229		SD_DAT[2]	
230	AD19	USB_PRTPWR	Keep the pin open.
231	AD20	I2C_SDA0	Pull up to VDDE or pull down to VSS through high resistance.
232	AD21	INT_A[1]	
234		MA[9]	Keep the pin open.
235	AD24	MA[6]	
236		MA[2]	
237	AB24	MWE	
238	AA24	MRAS	
239	Y24	MDQ[5]	Pull down to VSS through high resistance.
240	W24	MDQ[1]	
241	V24	MDQ[7]	
242	U24	MDQ[10]	
243	T24	MDQ[9]	
244	R24	MDM[1]	
247	M24	MDQ[18]	

FUJITSU

Pin No.	JEDEC	Pin name	Process
248	L24	MDQ[17]	Pull down to VSS through high resistance.
249	K24	MDQ[23]	
250	J24	MDQ[26]	
251	H24	MDQ[28]	1
252	G24	MDM[3]	
253	F24	MEM_ED[1]	Pull up to VDDE or pull down to VSS through high resistance.
254	E24	MEM_ED[5]	
255	D24	MEM_ED[9]	
256	C24	MEM_ED[13]	
257	C23	MEM_EA[2]	
258	C22	MEM_EA[6]	
259	C21	MEM_EA[10]	
260	C20	MEM_EA[14]	
261	C19	MEM_EA[18]	
262	C18	MEM_EA[22]	
263	C17	MEM_XWR[0]	
264	C16	MEM_XCS[2]	
267	C13	ТСК	
269	C11	TRACEDATA[1], UART_SIN5, PWM_O1	
270	C10	TRACECLK, UART_SIN3	
271	C9	DOUTB0[2]	Keep the pin open.
272	C8	DOUTB0[6]	
273	C7	DOUTG0[4]	
274	C6	DOUTR0[2]	
275	C5	DOUTR0[5]	
276	C4	DOUTR0[7]	
277	D4	DOUTB1[3], MEM_XWR[3], DOUTB0[1]	Pull up to VDDE or pull down to VSS through high resistance.
278	E4	DOUTB1[7], MEM_ED[19], DOUTR0[1]	
279	F4	DOUTG1[5], MEM_ED[23], GPIO_PD[9]	
280	G4	DOUTR1[3], MEM_ED[27], I2S_SDO0	
281	H4	DOUTR1[6], MEM_ED[30], I2S_SCK0	7
282	J4	HSYNC1, DREQ[6]	7
283	K4	DE1, XDACK[7]	Keep the pin open.
284	L4	VIN0[4]	Pull up to VDDE or pull down to VSS through high resistance.
285	M4	VIN0[0]	
287	P4	USB_AVSB	Connect to VSS.
288	R4	USB_AVSF2	
289	T4	USB_AVSF2	
292	W4	VIN1[3], RI1[3], CAN_TX1	Keep the pin open.
293	Y4	VIN1[0], GI1[6], I28_WS1	7
294	AA4	VINHSYNC1, I2S_SDI1	Pull up to VDDE or pull down to VSS through high resistance.

FUĴITSU

Pin No.	JEDEC	Pin name	Process
295	AB4	I2S_WS2, BI1[3], SPI_SS	Keep the pin open.
296	AC4	IDE_DINTRQ, I2S_SDO1	
297	AC5	IDE_DD[15], CAN_TX0	
298	AC6	IDE_DD[11], GPIO_PD[23]	
299	AC7	IDE_DD[7], GPIO_PD[19]	Keep the pin open.
300	AC8	IDE_DD[3], GPIO_PD[15]	
301	AC9	IDE_DA[2], Reserved (output)	
302	AC10	IDE_XDIOW, Reserved (output)	
303		MPX_MODE_1[0]	Pull up to VDDE or pull down to VSS through high resistance.
305	AC13	AD_VR0	Connect to VSS.
306	AC14	AD_VR1	
308		UART_SIN2	Pull up to VDDE or pull down to VSS through high resistance.
309		SD_CLK	Keep the pin open.
310		SD_DAT[3]	Pull up to VDDE or pull down to VSS through high resistance.
312		INT_A[2]	
313		DDRTYPE	Pull up to VDDE through high resistance.
314		ODTCONT	Keep the pin open.
315		MA[0]	
316		MCS	
317		MCAS	
318		MDQ[3]	Pull down to VSS through high resistance.
319		MDQ[4]	
320		MDM[0]	
321		MDQ[11]	
322		MDQ[12]	
323		MDQ[14]	
324		OCD	Keep the pin open.
325		ODT	
326		MDQ[19]	Pull down to VSS through high resistance.
327		MDQ[20]	
328		MDM[2]	
329		MDQ[27]	
330		MDQ[25]	
331		MDQ[30]	
332	F23	MEM_ED[2]	Pull up to VDDE or pull down to VSS through high resistance.
333		MEM_ED[6]	
334		MEM_ED[10]	
335		MEM_EA[5]	
336		MEM_EA[9]	
337		MEM_EA[13]	
338	D19	MEM_EA[17]	

FUĴITSU

Pin No.	JEDEC	Pin name	Process
339	D18	MEM_EA[21]	Pull up to VDDE or pull down to VSS through high resistance.
340	D17	MEM_EA[24]	
341	D16	MEM_XCS[0]	
342	D15	MEM_RDY	
344	D13	TDI	
346	D11	TRACEDATA[2], UART_SOUT4	
347	D10	RTCK	Keep the pin open.
348	D9	DOUTB0[3]	
349	D8	DOUTB0[7]	
350	D7	DOUTG0[5]	
351	D6	DOUTR0[3]	
352	D5	DOUTR0[6]	
362	P5	USB_AVDB	Connect to VDDE.
363	R5	USB_EXT12K	Pull down to VSS through $10k\Omega$ resistance.
364	T5	USB_AVSF2	Connect to VSS.
378	AB13	AD_VRL0	
379	AB14	AD_VRL1	
391	V22	MDQ[6]	Pull down to VSS through high resistance.
398	L22	MDQ[22]	

1.6.27. Unused pin in the duplex case with pin multiplex function

PWM, I2S1, and CAN pins may be duplicated and allocated to external pin depending on pin multiplex function's group combination. In this case, follow the procedure below.

Pin No.	JEDEC	Pin multiplex group: pin name	Process
122	AC2	Pin multiplex group #2:PWM_O1	Keep the pin open.
123	AD2	Pin multiplex group #2:PWM_O0	
220	AD9	Pin multiplex group #4:PWM_O1	
131	AE9	Pin multiplex group #4:PWM_O0	
269	C11	Pin multiplex group #5:PWM_O1	Pull down to VSS through high resistance.
184	B11	Pin multiplex group #5:PWM_O0	
118	W2	Pin multiplex group #2:CAN_TX0	Keep the pin open.
292	W4	Pin multiplex group #2:CAN_TX1	—
209	W3	Pin multiplex group #2:CAN_RX0	
119	Y2	Pin multiplex group #2:CAN_RX1	—
297	AC5	Pin multiplex group #4:CAN_TX0	
127	AE5	Pin multiplex group #4:CAN_TX1	
216	AD5	Pin multiplex group #4:CAN_RX0	
30	AF5	Pin multiplex group #4:CAN_RX1	
210	Y3	Pin multiplex group #2:I2S_SCK1	
293	Y4	Pin multiplex group #2:I2S_WS1	
211	AA3	Pin multiplex group #2:I2S_ECLK1	Pull down to VSS through high resistance.
294	AA4	Pin multiplex group #2:I2S_SDI1	—
22	AB1	Pin multiplex group #2:I2S_SDO1	Keep the pin open.
28	AF3	Pin multiplex group #4:I2S_SDI1	Pull down to VSS through high resistance.
125	AE3	Pin multiplex group #4:I2S_WS1	Keep the pin open.
215	AD4	Pin multiplex group #4:I2S_ECLK1 Pull down to VSS through high resistance	
214	AD3	Pin multiplex group #4:I2S_SCK1	Keep the pin open.
296	AC4	Pin multiplex group #4:I2S_SDO1	

 Table 1-37
 Unused pin process in the duplex case with pin multiplex function

2. System configuration

Figure 2-1 shows system configuration for which this LSI is used to in-vehicle navigation.

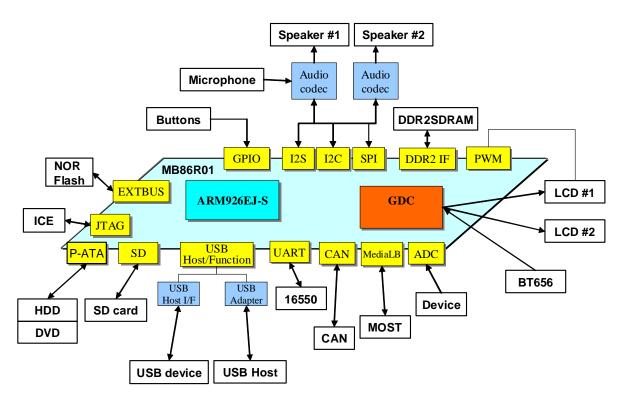
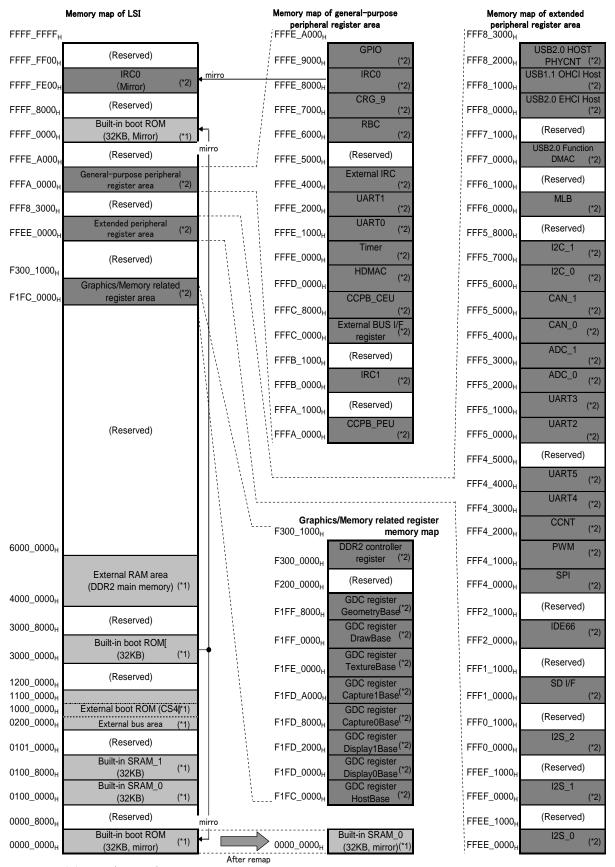


Figure 2-1 Sample of MB86R01 system configuration

3. Memory map


This chapter shows memory map and register map of MB86R01.

3.1. Memory map of LSI

Figure 3-1 shows MB86R01 memory map.

As the memory map indicates, boot operation jumps to user code, external boot ROM (1000_0000_H) through built-in boot ROM (0000_0000_H) (Setting 1000_0000_H to program counter (PC).) After the jump, set remap boot controller to remap internal boot ROM area $(0000_0000_H \sim 0000_8000_H)$ to internal SRAM_0, then proceed interrupt vector area setting and each register setting.

FUJITSU

(*1) Memory (ROM/RAM) area (*2) IO (register by function module) area

3.2. Register access

Basically, register in MB86R01 should be accessed by word length except some registers. Table 3-1 shows valid access data length of each register.

Module	Register name	Valid data length
DMAC	DMACR	Byte (8 bit) Address follows endian
	DMACA, DMACB, DMACSA, DMACDA	Word (32 bit)/Half-word (16 bit)/Byte (8 bit)
UART	RFR, TFR, DLL	Word (32 bit)/Byte (8 bit) When these registers are accessed by byte long, address follows endian
GPIO	PDR0, PDR1, PDR2	Word (32 bit)/Byte (8 bit). When these registers are accessed by byte long, address follows endian
DDR2 controller	All registers of DDR2 controller	Half-word (16 bit) Address follows endian
SDMC	All registers of SDMC	Byte (8 bit) Address follows endian
Others	All registers other than the above	Word (32 bit)

 Table 3-1
 Valid access data length of register

3.3. **Register map**

Table 3-2	MB86R01 reg	gister map	
Module name	Address	Register name	Explanation
GDC	F1FC_0000 _H - F1FF_FFFF _H	Refer another document, MB8	6R01 GDC specifications for GDC register
No module	F200_0000 _H - F2FF_FFFF _H	Reserved	Access prohibited
DDR2 controller	F300_0000 _H	DRIC	Initialization control register
	F300_0002 _H	DRIC1	Initialization control command register 1
	F300_0004 _H	DRIC2	Initialization control command register 2
	F300_0006 _H	DRCA	Address control register
	F300_0008 _H	DRCM	Mode control register
	F300_000A _H	DRCST1	Timing setting register 1
	F300_000C _H	DRCST2	Timing setting register 2
	F300_000E _H	DRCR	Refresh control register
	F300_0010 _H - F300_001F _H	Reserved	Access prohibited
	F300_0020 _H	DRCF	FIFO control register
	F300_0022 _H - F300_002F _H	Reserved	Access prohibited
	F300_0030 _H	DRASR	AXI operation setting register
	F300_0032 _H - F300_004F _H	Reserved	Access prohibited
	F300_0050 _H	DRIMSD	IF setting register
	F300_0052 _H - F300_005F _H	Reserved	Access prohibited
	F300_0060 _H	DROS	ODT setting register
	F300_0062 _H	Reserved	Access prohibited
	F300_0064 _H	DRIBSODT1	IO ODT1 setting register
	F300_0066 _H	DRIBSOCD	IO OCD setting register
	F300_0068 _H	DRIBSOCD2	IO OCD2 setting register
	F300_006A _H - F300_006F _H	Reserved	Access prohibited
	F300_0070 _H	DROABA	ODT bias auto adjustment register
	F300_0072 _H - F300_0083 _H	Reserved	Access prohibited
	F300_0084 _H	DROBS	ODT bias selection register
	F300_0086 _H - F300_008F _H	Reserved	Access prohibited
	F300_0090 _H	DRIMR1	IO monitor register 1
	F300_0092 _H	DRIMR2	IO monitor register 2
	F300_0094 _H	DRIMR3	IO monitor register 3
	F300_0096 _H	DRIMR4	IO monitor register 4
	F300_0098 _H	DROISR1	OCD impedance setting register 1
	F300_009A _H	DROISR2	OCD impedance setting register 2
	F300_009C _H - F300_0FFF _H	Reserved	Access prohibited
No module	F300_1000 _H - FFED_FFFF _H	Reserved	Access prohibited
I2S_0	FFEE_0000 _H	I2S0RXFDAT	I2S_0 reception FIFO data register
	FFEE_0004 _H	I2S0TXFDAT	I2S_0 transmission FIFO data register

Module name	Address	Register name	Explanation
I2S_0	$FFEE_{0008_{H}}$	I2S0CNTREG	I2S_0 control register
	FFEE_000C _H	I2S0MCR0REG	I2S_0 channel control register 0
	FFEE_0010 _H	I2S0MCR1REG	I2S_0 channel control register 1
	FFEE_0014 _H	I2S0MCR2REG	I2S_0 channel control register 2
	FFEE_0018 _H	I2S0OPRREG	I2S_0 operation control register
	FFEE_001C _H	I2S0SRST	I2S_0 software reset register
	FFEE_0020 _H	I2S0INTCNT	I2S_0 interrupt control register
	FFEE_0024 _H	I2S0STATUS	I2S_0 status register
	FFEE_0028 _H	I2S0DMAACT	I2S_0 DMA start register
	FFEE_002C _H - FFEE_0FFF _H	Reserved	Access prohibited
No module	FFEE_1000 _H - FFEE_FFFF _H	Reserved	Access prohibited
I2S_1	FFEF_0000 _H	I2S1RXFDAT	I2S_1 reception FIFO data register
	FFEF_0004 _H	I2S1TXFDAT	I2S_1 transmission FIFO data register
	FFEF_0008 _H	I2S1CNTREG	I2S_1 control register
	FFEF_000C _H	I2S1MCR0REG	I2S_1 channel control register 0
	FFEF_0010 _H	I2S1MCR1REG	I2S_1 channel control register 1
	FFEF_0014 _H	I2S1MCR2REG	I2S_1 channel control register 2
	FFEF_0018 _H	I2S1OPRREG	I2S_1 operation control register
	FFEF_001C _H	I2S1SRST	I2S_1 software reset register
	FFEF_0020 _H	I2S1INTCNT	I2S_1 interrupt control register
	FFEF_0024 _H	I2S1STATUS	I2S_1 status register
	FFEF_0028 _H	I2S1DMAACT	I2S_1 DMA start register
	FFEF_002C _H - FFEF_0FFF _H	Reserved	Access prohibited
No module	FFEF_1000 _H - FFEF_FFFF _H	Reserved	Access prohibited
I2S_2	FFF0_0000 _H	I2S2RXFDAT	I2S_2 reception FIFO data register
	FFF0_0004 _H	I2S2TXFDAT	I2S_2 transmission FIFO data register
	FFF0_0008 _H	I2S2CNTREG	I2S_2 control register
	FFF0_000C _H	I2S2MCR0REG	I2S_2 channel control register 0
	FFF0_0010 _H	I2S2MCR1REG	I2S_2 channel control register 1
	FFF0_0014 _H	I2S2MCR2REG	I2S_2 channel control register 2
	FFF0_0018 _H	I2S2OPRREG	I2S_2 operation control register
	FFF0_001C _H	I2S2SRST	I2S_2 software reset register
	FFF0_0020 _H	I2S2INTCNT	I2S_2 interrupt control register
	FFF0_0024 _H	I2S2STATUS	I2S_2 status register
	FFF0_0028 _H	I2S2DMAACT	I2S_2 DMA start register
	FFF0_002C _H - FFF0_0FFF _H	Reserved	Access prohibited
No module	FFF0_1000 _H - FFF0_FFFF _H	Reserved	Access prohibited
SDMC	FFF1_0000 _H - FFF1_0FFF _H	Another specifications	Another specifications
No module	FFF1_1000 _H - FFF1_FFFF _H	Reserved	Access prohibited
IDE host controller	FFF2_0000 _H	CS0DAT	CS0 DATA register
	FFF2_0004 _H	CS0ER/CS0FT	CS0 Error/Features register
	FFF2_0008 _H	CS0SC	CS0 Sector count register
	FFF2_000C _H	CS0SN	CS0 Sector number register

Module name	Address	Register name	Explanation
IDE host controller	FFF2_0010 _H	CS0CL	CS0 Cylinder low register
	FFF2_0014 _H	CS0CH	CS0 Cylinder high register
	FFF2_0018 _H	CS0DH	CS0 Device head register
	FFF2_001C _H	CS0ST/CS0CMD	CS0 Status/Command register
	FFF2_0020 _H - FFF2_0037 _H	Reserved	Access prohibited
	FFF2_0038 _H	CS1AS/CS1DC	CS1 Alternate status/Device control register
	FFF2_003C _H	Reserved	Access prohibited
	FFF2_0040 _H	IDEDATA	Data register
	FFF2_0044 _H - FFF2_0047 _H	Reserved	Access prohibited
	FFF2_0048 _H	IDEPTCR	PIO timing control register
	FFF2_004C _H	IDEPASR	PIO address setup register
	FFF2_0050 _H	IDEICMR	IDE command register
	FFF2_0054 _H	IDEISTR	IDE status register
	FFF2_0058 _H	IDEINER	Interrupt enable register
	FFF2_005C _H	IDEINSR	Interrupt status register
	FFF2_0060 _H	IDEFCMR	FIFO command register
	FFF2_0064 _H	IDEFSTR	FIFO status register
	FFF2_0068 _H	IDETFCR	Transmission FIFO count register
	FFF2_006C _H	Reserved	Access prohibited
	FFF2_0070 _H	IDERFCR	Reception FIFO count register
	FFF2_0074 _H -	Reserved	Access prohibited
	FFF2_00C7 _H		
	FFF2_00C8 _H	IDEUTCR	UDMA timing control register
	FFF2_00CD _H - FFF2_00CF _H	Reserved	Access prohibited
	FFF2_00D0 _H	IDEUCMR	UDMA command register
	FFF2_00D4 _H	IDEUSTR	UDMA status register
	FFF2_00D8 _H - FFF2_014F _H	Reserved	Access prohibited
	FFF2_0150 _H	IDERRCC	RxFIFO rest count compare value
	FFF2_0154 _H	IDEUTC1	Ultra DMA timing control 1
	FFF2_0158 _H	IDEUTC2	Ultra DMA timing control 2
	FFF2_015C _H	IDEUTC3	Ultra DMA timing control 3
	FFF2_0160 _H - FFF2_01FF _H	Reserved	Access prohibited
	FFF2_0200 _H	IDESTATUS	DMA status register
	FFF2_0204 _H	IDEINT	Interrupt register
	FFF2_0208 _H	IDEINTMSK	Interrupt mask register
	FFF2_020C _H	IDEPIOCTL	PIO access control register
	FFF2_0210 _H	IDEDMACTL	DMA control register
	FFF2_0214 _H	IDEDMATC	DMA transfer control register
	FFF2_0218 _H	IDEDMASAD	DMA source address register
	FFF2_021C _H	IDEDMADAD	DMA destination address register
	FFF2_0220 _H - FFF2_0FFF _H	Reserved	Access prohibited
No module	FFF2_1000 _H - FFF3_FFFF _H	Reserved	Access prohibited
SPI	FFF4_0000 _H	SPICR	SPI control register
	 FFF4_0004 _H	SPISCR	SPI slave control register

Module name	Address	Register name	Explanation
SPI	FFF4_0008 _H	SPIDR	SPI data register
	FFF4_000C _H	SPISR	SPI status register
	FFF4_0010 _H - FFF4_0FFF _H	Reserved	Access prohibited
PWM	$FFF4_{1000_{H}}$	PWM0BCR	PWM ch0 base clock register
	$FFF4_{1004_{H}}$	PWM0TPR	PWM ch0 pulse width register
	$FFF4_{1008_{H}}$	PWM0PR	PWM ch0 phase register
	$FFF4_{100C_{H}}$	PWM0DR	PWM ch0 duty register
	FFF4_1010 _H	PWM0CR	PWM ch0 status register
	$FFF4_{1014_{H}}$	PWM0SR	PWM ch0 start register
	FFF4_1018 _H	PWM0CCR	PWM ch0 current count register
	$FFF4_{101C_{H}}$	PWM0IR	PWM ch0 interrupt register
	FFF4_1020 _H - FFF4_10FF _H	Reserved	Access prohibited
	FFF4_1100 _H	PWM1BCR	PWM ch1 base clock register
	FFF4_1104 _H	PWM1TPR	PWM ch1 pulse width register
	FFF4_1108 _H	PWM1PR	PWM ch1 phase register
	FFF4_110C _H	PWM1DR	PWM ch1 duty register
	FFF4_1110 _H	PWM1CR	PWM ch1 status register
	FFF4_1114 _H	PWM1SR	PWM ch1 start register
	FFF4_1118 _H	PWM1CCR	PWM ch1 current count register
	FFF4_111C _H	PWM1IR	PWM ch1 interrupt register
	FFF4_1120 _H - FFF4_1FFF _H	Reserved	Access prohibited
CCNT	$FFF4_{2000_{H}}$	CCID	Chip ID register
	$FFF4_{2004_{H}}$	CSRST	Software reset register
	FFF4_2008 _H - FFF4_200F _H	Reserved	Access prohibited
	FFF4_2010 _H	CIST	Interrupt status register
	$FFF4_{2014_{H}}$	CISTM	Interrupt status mask register
	$FFF4_{2018_{H}}$	CGPIO_IST	GPIO interrupt status register
	FFF4_201C _H	CGPIO_ISTM	GPIO interrupt status mask register
	$FFF4_{2020_{H}}$	CGPIO_IP	GPIO interrupt polarity setting register
	$FFF4_{2024_{H}}$	CGPIO_IM	GPIO interrupt mode setting register
	$FFF4_{2028_{H}}$	CAXI_BW	AXI bus wait cycle setting register
	$FFF4_202C_H$	CAXI_PS	AXI priority setting register
	FFF4_2030 _H	CMUX_MD	Multiplex mode setting register
	$FFF4_2024_H$	CEX_PIN_ST	External pin status register
	FFF4_2038 _H	CMLB	MediaLB setting register
	FFF4_203C _H	Reserved	Access prohibited
	FFF4_2040 _H	CUSB	USB setting register
	FFF4_2044 _H - FFF4_20E7 _H	Reserved	Access prohibited
	FFF4_20E8 _H	CBSC	Byte swap switching register
	FFF4_20EC _H	CDCRC	DDR2 controller reset control register
	FFF4_20F0 _H	CMSR0	Software reset register 0 for macro
	FFF4_20F4 _H	CMSR1	Software reset register 1 for macro
	FFF4_20F8 _H - FFF4_2FFF _H	Reserved	Access prohibited
UART4	FFF4_3000 _H	URT4RFR	Transmission FIFO register (read only at DLAB = 0) When it accesses RFR by byte long in the big endia mode, address becomes $FFF4_3003_{H}$.

Module name	Address	Register name	Explanation
UART4	FFF4_3000 _H	URT4TFR	Transmission FIFO register (write only at $DLAB = 0$) When it accesses TFR by byte long in the big endian
			mode, address becomes $FFF4_3003_{H}$.
		URT4DLL	Dividing frequency value (lower byte at DLAB = 1) When it accesses DLL by byte long in the big endian mode, address becomes $FFF4_{3003_{H}}$.
	FFF4_3004 _H	URT4IER	DLAB = 0: Interrupt enable register
		URT4DLM	DLAB = 1: Dividing frequency value (upper byte)
	FFF4_3008 _H	URT4IIR	Interrupt ID register (read only)
		URT4FCR	FIFO control register (write only)
	FFF4_300C _H	URT4LCR	Line control register
	FFF4_3010 _H	URT4MCR	Modem control register
	FFF4_3014 _H	URT4LSR	Line status register
	FFF4_3018 _H	URT4MSR	Modem status register
	FFF4_301C _H - FFF4_3FFF _H	Reserved	Access prohibited
UART5	FFF4_4000 _H	URT5RFR	Transmission FIFO register (read only at $DLAB = 0$) When it accesses RFR by byte long in the big endian mode, address becomes FFF4_4003H.
		URT5TFR	Transmission FIFO register (write only at $DLAB = 0$) When it accesses TFR by byte long in the big endian mode, address becomes $FFF4_4003_{H}$.
		URT5DLL	Dividing frequency value (lower byte at DLAB = 1) When it accesses DLL by byte long in the big endian mode, address becomes $FFF4_4003_{H}$.
	$FFF4_4004_{H}$	URT5IER	DLAB = 0: Interrupt enable register.
		URT5DLM	DLAB = 1: Dividing frequency value (upper byte)
	$FFF4_4008_{H}$	URT5IIR	Interrupt ID register (read only)
		URT5FCR	FIFO control register (write only)
	$FFF4_400C_H$	URT5LCR	Line control register
	FFF4_4010 _H	URT5MCR	Modem control register
	$FFF4_4014_{H}$	URT5LSR	Line status register
	$FFF4_4018_{H}$	URT5MSR	Modem status register
	FFF4_401C _H - FFF4_4FFF _H	Reserved	Access prohibited
No module	FFF4_5000 _H - FFF4_FFFF _H	Reserved	Access prohibited
UART2	FFF5_0000 _H	URT2RFR	Transmission FIFO register (read only at DLAB = 0) When it accesses RFR by byte long in the big endian mode, address becomes $FFF5_0003_{H}$.
		URT2TFR	Transmission FIFO register (write only at DLAB = 0) When it accesses TFR by byte long in the big endian mode, address becomes $FFF5_0003_{H}$.
		URT2DLL	Dividing frequency value (lower byte at DLAB = 1) When it accesses DLL by byte long in the big endian mode, address becomes $FFF5_0003_{H}$.
	FFF5_0004 _H	URT2IER	DLAB = 0: Interrupt enable register.
		URT2DLM	DLAB = 1: Dividing frequency value (upper byte)
	FFF5_0008 _H	URT2IIR	Interrupt ID register (read only)
		URT2FCR	FIFO control register (write only)
	FFF5_000C _H	URT2LCR	Line control register
	FFF5_0010 _H	URT2MCR	Modem control register
	FFF5_0014 _H	URT2LSR	Line status register
	FFF5_0018 _H	URT2MSR	Modem status register

Module name	Address	Register name	Explanation
UART2	FFF5_001C _H - FFF5_0FFF _H	Reserved	Access prohibited
UART3	FFF5_1000 _H	URT3RFR	Transmission FIFO register (read only at DLAB = 0) When it accesses RFR by byte long in the big endian mode, address becomes $FFF5_{1003_{H}}$.
		URT3TFR	Transmission FIFO register (write only at DLAB = 0) When it accesses TFR by byte long in the big endian mode, address becomes $FFF5_1003_{H}$.
		URT3DLL	Dividing frequency value (lower byte at DLAB = 1) When it accesses DLL by byte long in the big endian mode, address becomes $FFF5_1003_{H}$.
	FFF5_1004 _H	URT3IER	DLAB = 0: Interrupt enable register.
		URT3DLM	DLAB = 1: Dividing frequency value (upper byte)
	FFF5_1008 _H	URT3IIR	Interrupt ID register (read only)
		URT3FCR	FIFO control register (write only)
	FFF5_100C _H	URT3LCR	Line control register
	FFF5_1010 _H	URT3MCR	Modem control register
	FFF5_1014 _H	URT3LSR	Line status register
	FFF5_1018 _H	URT3MSR	Modem status register
	FFF5_101C _H - FFF5_1FFF _H	Reserved	Access prohibited
ADC_0	FFF5_2000 _H	ADC0DATA	Data register
	FFF5_2004 _H	Reserved	Access prohibited
	FFF5_2008 _H	ADC0XPD	Power down control register
	FFF5_200C _H	Reserved	Access prohibited
	FFF5_2010 _H	ADC0CKSEL	Clock selection register
	FFF5_2014 _H	ADC0STATUS	Status register
	FFF5_2018 _H - FFF5_2FFF _H	Reserved	Access prohibited
ADC_1	FFF5_3000 _H	ADC1DATA	Data register
	FFF5_3004 _H	Reserved	Access prohibited
	FFF5_3008 _H	ADC1XPD	Power down control register
	FFF5_300C _H	Reserved	Access prohibited
	FFF5_3010 _H	ADC1CKSEL	Clock selection register
	FFF5_3014 _H	ADC1STATUS	Status register
	FFF5_3018 _H - FFF5_3FFF _H	Reserved	Access prohibited
CAN_0	$FFF5_4000_H - FFF5_4FFF_H$	Another specifications	Another specifications
CAN_1	FFF5_5000 _H - FFF5_5FFF _H	Another specifications	Another specifications
I^2C_0	$FFF5_6000_H$	I2C0BSR	I2C bus status register ch0
	FFF5_6004 _H	I2C0BCR	I2C bus control register ch0
	$FFF5_6008_{H}$	I2C0CCR	I2C clock control register ch0
	FFF5_600C _H	I2C0ADR	I2C address register ch0
	FFF5_6010 _H	I2C0DAR	I2C data register ch0
	FFF5_6014 _H	I2C0ECSR	I2C extension CS register ch0
	FFF5_6018 _H	I2C0BCFR	I2C bus clock frequency register ch0
	FFF5_601C _H	I2C0BC2R	I2C bus control 2 registers ch0
	FFF5_6020 _H - FFF5_6FFF _H	Reserved	Access prohibited
I^2C_1	FFF5_7000 _H	I2C1BSR	I2C bus status register ch1
	FFF5_7004 _H	I2C1BCR	I2C bus control register ch1

Module name	Address	Register name	Explanation
I^2C_1	FFF5_7008 _H	I2C1CCR	I2C clock control register ch1
	FFF5_700C _H	I2C1ADR	I2C address register ch1
	FFF5_7010 _H	I2C1DAR	I2C data register ch1
	FFF5_7014 _H	I2C1ECSR	I2C extension CS register ch1
	FFF5_7018 _H	I2C1BCFR	I2C bus clock frequency register ch1
	FFF5_701C _H	I2C1BC2R	I2C bus control 2 registers ch1
	FFF5_7020 _H - FFF5_7FFF _H	Reserved	Access prohibited
No module	FFF5_8000 _H - FFF5_FFFF _H	Reserved	Access prohibited
MediaLB	FFF6_0000 _H - FFF6_0FFF _H	Another specifications	Another specifications
No module	FFF6_1000 _H - FFF6_FFFF _H	Reserved	Access prohibited
USB 2.0	FFF7_0000 _H	UFCpAC	USB function CPU access control register
Function DMAC	FFF7_0004 _H	UFDvC	USB function device control register
	FFF7_0008 _H	UFDvS	USB function device status register
	FFF7_000C _H	UFEpIC	USB function endpoint interrupt control register
	FFF7_0010 _H	UFEpIS	USB function endpoint interrupt status register
	FFF7_0014 _H	UFEpDC	USB function endpoint DMA control register
	FFF7_0018 _H	UFEpDS	USB function endpoint DMA status register
	FFF7_001C _H	UFTSTAMP	USB function time stamp register
	FFF7_0020 _H	UFEpTCSel	UFEpTCSel register
	FFF7_0024 _H	UFEpTC1	USB function endpoint 1 terminal count register
	FFF7_0028 _H	UFEpTC2	USB function endpoint 2 terminal count register
	FFF7_002C _H - FFF7_006C _H	Reserved	Access prohibited
	FFF7_0070 _H	UFEpRS0	USB function endpoint 0 Rx size register
	FFF7_0074 _H	Reserved	Access prohibited
	FFF7_0078 _H	UFEpRS1	USB function endpoint 1 Rx size register
	FFF7_007C _H	Reserved	Access prohibited
	FFF7_0080 _H	UFEpRS2	USB function endpoint 2 Rx size register
	FFF7_0084 _H	Reserved	Access prohibited
	FFF7_0088 _H	UFEpRS3	USB function endpoint 3 Rx size register
	FFF7_008C _H - FFF7_00EF _H	Reserved	Access prohibited
	FFF7_00F0 _H	UFCusCnt	UFCusCnt register
	FFF7_00F4 _H	UFCALB	UFCALB register
	FFF7_00F8 _H	UFEpLpBk	UFEpLpBk register
	FFF7_00FC _H	UFIntfAltNum	UFIntfAltNum register
	FFF7_0100 _H	UFEpC0	USB function endpoint 0 control register
	FFF7_0104 _H	UFEpS0	USB function endpoint 0 status register
	FFF7_0108 _H	UFEpC1	USB function endpoint 1 control register
	FFF7_010C _H	UFEpS1	USB function endpoint 1 status register
	FFF7_0110 _H	UFEpC2	USB function endpoint 2 control register
	FFF7_0114 _H	UFEpS2	USB function endpoint 2 status register
	FFF7_0118 _H	UFEpC3	USB function endpoint 3 control register
	FFF7_011C _H	UFEpS3	USB function endpoint 3 status register
	FFF7_0120 _H -	Reserved	Access prohibited
	FFF7_017F _H		

Module name	Address	Register name	Explanation
USB 2.0	FFF7_0184 _H	UFEpIB1	USB function endpoint 1 IN buffer register
Function			
DMAC	FFF7_0188 _H	UFEpIB2	USP function and point 2 IN buffer register
	$FFF7_0180_{\rm H}$ FFF7_018C _H	UFEpIB3	USB function endpoint 2 IN buffer register USB function endpoint 3 IN buffer register
	$FFF7_018C_{\rm H}$	Reserved	Access prohibited
	$FFF7_01BF_H$	Reserved	Access promoticu
	FFF7_01C0 _H	UFEpOB0	USB function endpoint 0 OUT buffer register
	FFF7_01C4 _H	UFEpOB1	USB function endpoint 1 OUT buffer register
	FFF7_01C8 _H	UFEpOB2	USB function endpoint 2 OUT buffer register
	FFF7_01CC _H -	Reserved	Access prohibited
	FFF7_01FF _H		
	FFF7_0200 _H - FFF7_0213 _H	UFConfig	UFConfig registers
	FFF7_0214 _H - FFF7_0403 _H	Reserved	Access prohibited
	FFF7_0404 _H	UFEpDC1	USB function endpoint 1 DMA control/status register
	FFF7_0408 _H	UFEpDC2	USB function endpoint 2 DMA control/status register
	FFF7_040C _H - FFF7_0410 _H	Reserved	Access prohibited
	FFF7_0414 _H	UFEpDA1	USB function endpoint 1 DMA address register
	FFF7_0418 _H	UFEpDA2	USB function endpoint 2 DMA address register
	FFF7_041C _H - FFF7_0420 _H	Reserved	Access prohibited
	FFF7_0424 _H	UFEpDS1	USB function endpoint 1 DMA size register
	FFF7_0428 _H	UFEpDS2	USB function endpoint 2 DMA size register
	FFF7_042C _H - FFF7_0FFF _H	Reserved	Access prohibited
No module	FFF7_1000 _H - FFF7_FFFF _H	Reserved	Access prohibited
USB 2.0 EHCI	FFF8_0000 _H	HCCAPBASE	Capability register
Host	FFF8_0004 _H	HCSPARAMS	Structural parameter register
	FFF8_0008 _H	HCCPARAMS	Capability parameter register
	FFF8_000C _H	Reserved	Access prohibited
	FFF8_0010 _H	USBCMD	USB command register
	FFF8_0014 _H	USBSTS	USB status register
	FFF8_0018 _H	USBINTR	USB interrupt enable register
	FFF8_001C _H	FRINDEX	USB frame index register
	FFF8_0020 _H	CTRLDSSEGMENT	4G segment selector register
	$FFF8_0024_{H}$	PERIODICLISTBASE	Periodic frame list base address register
	$FFF8_0028_{H}$	ASNCLISTADDR	Asynchronous list address register
	FFF8_002C _H - FFF8_004F _H	Reserved	Access prohibited
	FFF8_0050 _H	CONFIGFLAG	Configured flag register
	FFF8_0054 _H	PORTSC_1	Port status/control register
	FFF8_0058 _H - FFF8_008F _H	Reserved	Access prohibited
	FFF8_0090 _H	INSNREG00	Programmable Microframe base value register
	FFF8_0094 _H	INSNREG01	Programmable packet buffer OUT/IN threshold register
	FFF8_0098 _H	INSNREG02	Programmable packet buffer depth register
	FFF8_009C _H	INSNREG03	Break memory transfer register
	FFF8_00A0 _H	INSNREG04	Debug register
	FFF8_00A4 _H	INSNREG05	UTMI control status register

Host I USB 2.0 OHCI I	FFF8_00A8 _H -			
USB 2.0 OHCI		Reserved	Access prohibited	
	FFF8_0FFF _H			
Host	FFF8_1000 _H	HcRevision	Revision Register	
	FFF8_1004 _H	HcControl	Control Register	
I	FFF8_1008 _H	HcCommandStatus	Command/Status Register	
I	FFF8_100C _H	HcInterruptStatus	Interrupt status register	
I	FFF8_1010 _H	HcInterruptEnable	Interrupt enable register	
I	FFF8_1014 _H	HcInterruptDisable	Interrupt disable register	
I	FFF8_1018 _H	HcHCCA	HCCA register	
I	FFF8_101C _H	HcPeriodCurrentED	Period current ED register	
I	FFF8_1020 _H	HcControlHeadED	Control head ED register	
I	FFF8_1024 _H	HcControlCurrentED	Control current ED register	
I	FFF8_1028 _H	HcBulkHeadED	Bulk head ED register	
I	FFF8_102C _H	HcBulkCurrentED	Bulk current ED register	
I	FFF8_1030 _H	HcDoneHead	Done head register	
I	FFF8_1034 _H	HcFmInterval	Frame interval register	
I	FFF8_1038 _H	HcFmRemaining	Frame remaining register	
J	FFF8_103C _H	HcFmNumber	Frame number register	
J	FFF8_1040 _H	HcPeriodicStart	Periodic start register	
J	FFF8_1044 _H	HcLSThreshold	LS threshold register	
I	FFF8_1048 _H	HcRhDescriptorA	Root hub descriptor A register	
I	FFF8_104C _H	HcRhDescriptorB	Root hub descriptor B register	
	FFF8_1050 _H	HcRhStatus	Root hub status register	
	FFF8_1054 _H	HcRhPortStatus[1]	Root hub port status/control register 1	
	FFF8_1058 _H - FFF8_1FFF _H	Reserved	Access prohibited	
USB 2.0 Host	FFF8_2000 _H	LinkModeSetting	Link mode setting register	
PHYCNT I	FFF8_2004 _H	PHY Mode Setting1	PHY mode setting 1 register	
I	FFF8_2008 _H	PHY Mode Setting2	PHY mode setting 2 register	
	FFF8_200C _H - FFF8_2FFF _H	Reserved	Access prohibited	
	FFF8_3000 _H - FFF9_FFFF _H	Reserved	Access prohibited	
	FFFA_0000 _H - FFFA_0FFF _H	Another specifications	Another specifications	
	FFFA_1000 _H - FFFA_FFFF _H	Reserved	Access prohibited	
Interrupt I	FFFB_0000 _H	IR1IRQF	IRQ flag register	
controller 1	FFFB_0004 _H	IR1IRQM	IRQ mask register	
(IRC1)	FFFB_0008 _H	IR1ILM	Interrupt level mask register	
I	FFFB_000C _H	IR1ICRMN	ICR monitoring register	
	FFFB_0010 _H - FFFB_0018 _H	Reserved	Access prohibited	
-	FFFB_001C _H	IR1TBR	Table base register	
-	FFFB_0020 _H	IR1VCT	Interrupt vector register	
	FFFB_0024 _H - FFFB_002C _H	Reserved	Access prohibited	
-	FFFB_0030 _H	IR1ICR0	Interrupt control register 00	
	FFFB_0034 _H	IR1ICR1	Interrupt control register 01	
	FFFB_0038 _H	IR1ICR2 Interrupt control register 02		
	FFFB_003C _H	IR1ICR3	Interrupt control register 03	

Module name	Address	Register name	Explanation
Interrupt	FFFB_0040 _H	IR1ICR4	Interrupt control register 04
controller 1			
(IRC1)			
	FFFB_0044 _H	IR1ICR5	Interrupt control register 05
	FFFB_0048 _H	IR1ICR6	Interrupt control register 06
	FFFB_004C _H	IR1ICR7	Interrupt control register 07
	FFFB_0050 _H	IR1ICR8	Interrupt control register 08
	FFFB_0054 _H	IR1ICR9	Interrupt control register 09
	FFFB_0058 _H	IR1ICR10	Interrupt control register 10
	FFFB_005C _H	IR1ICR11	Interrupt control register 11
	FFFB_0060 _H	IR1ICR12	Interrupt control register 12
	FFFB_0064 _H	IR1ICR13	Interrupt control register 13
	FFFB_0068 _H	IR1ICR14	Interrupt control register 14
	FFFB_006C _H	IR1ICR15	Interrupt control register 15
	FFFB_0070 _H	IR1ICR16	Interrupt control register 16
	FFFB_0074 _H	IR1ICR17	Interrupt control register 17
	$FFFB_{0078_{H}}$	IR1ICR18	Interrupt control register 18
	$FFFB_007C_H$	IR1ICR19	Interrupt control register 19
	$FFFB_{0080_{H}}$	IR1ICR20	Interrupt control register 20
	$FFFB_{0084_{H}}$	IR1ICR21	Interrupt control register 21
	FFFB_0088 _H	IR1ICR22	Interrupt control register 22
	FFFB_008C _H	IR1ICR23	Interrupt control register 23
	FFFB_0090 _H	IR1ICR24	Interrupt control register 24
	FFFB_0094 _H	IR1ICR25	Interrupt control register 25
	FFFB_0098 _H	IR1ICR26	Interrupt control register 26
	FFFB_009C _H	IR1ICR27	Interrupt control register 27
	FFFB_00A0 _H	IR1ICR28	Interrupt control register 28
	FFFB_00A4 _H	IR1ICR29	Interrupt control register 29
	FFFB_00A8 _H	IR1ICR30	Interrupt control register 30
	FFFB_00AC _H	IR1ICR31	Interrupt control register 31
	FFFB_00B0 _H -	Reserved	Access prohibited
	FFFB_FFFF _H		·
External bus	$FFFC_{0000_{H}}$	MCFMODE0	SRAM/Flash-mode register 0
interface (External BUS			
I/F)			
,	FFFC_0004 _H	MCFMODE1	SRAM/Flash-mode register 1 (access prohibited)
	FFFC_0008 _H	MCFMODE2	SRAM/Flash-mode register 2
	FFFC_000C _H	MCFMODE3	SRAM/Flash-mode register 3 (access prohibited)
	FFFC_0010 _H	MCFMODE4	SRAM/Flash-mode register 4
	FFFC_0014 _H	MCFMODE5	SRAM/Flash-mode register 5 (access prohibited)
	FFFC_0018 _H	MCFMODE6	SRAM/Flash-mode register 6 (access prohibited)
	FFFC_001C _H	MCFMODE7	SRAM/Flash-mode register 7 (access prohibited)
	FFFC_0020 _H	MCFTIM0	SRAM/Flash timing register 0
	FFFC_0024 _H	MCFTIM1	SRAM/Flash timing register 0 SRAM/Flash timing register 1 (access prohibited)
	FFFC_0028 _H	MCFTIM2	SRAM/Flash timing register 2
	$FFFC_002C_H$	MCFTIM2 MCFTIM3	SRAM/Flash timing register 2 (access prohibited)
	$FFFC_002C_H$	MCFTIM4	SRAM/Flash timing register 4
	$FFFC_0034_{H}$	MCFTIM4 MCFTIM5	SRAM/Flash timing register 5 (access prohibited)
	$\frac{FFFC_0034_{\rm H}}{FFFC_0038_{\rm H}}$	MCFTIM5 MCFTIM6	SRAM/Flash timing register 6 (access prohibited)
<u> </u>	FFFC_003C _H	MCFTIM7	SRAM/Flash timing register 7 (access prohibited)

Module name	Address	Register name	Explanation
External bus	FFFC_0040 _H	MCFAREA0	SRAM/Flash area register 0
interface (External BUS I/F)			
	FFFC_0044 _H	MCFAREA1	SRAM/Flash area register 1
	FFFC_0048 _H	MCFAREA2	SRAM/Flash area register 2
	FFFC_004C _H	MCFAREA3	SRAM/Flash area register 3
	FFFC_0050 _H	MCFAREA4	SRAM/Flash area register 4
	FFFC_0054 _H	MCFAREA5	SRAM/Flash area register 5
	FFFC_0058 _H	MCFAREA6	SRAM/Flash area register 6
	FFFC_005C _H	MCFAREA7	SRAM/Flash area register 7
	FFFC_0060 _H - FFFC_01FC _H	Reserved	Access prohibited
	FFFC_0200 _H	MCERR	Memory controller error register
	FFFC_0204 _H - FFFC_7FFF _H	Reserved	Access prohibited
CCPB_CEU	FFFC_8000 _H - FFFC_FFFF _H	Another specifications	Another specifications
DMAC	FFFD_0000 _H	DMACR	DMAC configuration register
	FFFD_0004 _H - FFFD_000F _H	Reserved	Access prohibited
	FFFD_0010 _H	DMACA0	DMAC0 configuration A register
	FFFD_0014 _H	DMACB0	DMAC0 configuration B register
	FFFD_0018 _H	DMACSA0	DMAC0 source address register
	FFFD_001C _H	DMACDA0	DMAC0 destination address register
	FFFD_0020 _H	DMACA1	DMAC1 configuration A register
	FFFD_0024 _H	DMACB1	DMAC1 configuration B register
	FFFD_0028 _H	DMACSA1	DMAC1 source address register
	FFFD_002C _H	DMACDA1	DMAC1 destination address register
	FFFD_0030 _H	DMACA2	DMAC2 configuration A register
	FFFD_0034 _H	DMACB2	DMAC2 configuration B register
	FFFD_0038 _H	DMACSA2	DMAC2 source address register
	FFFD_003C _H	DMACDA2	DMAC2 destination address register
	FFFD_0040 _H	DMACA3	DMAC3 configuration A register
	FFFD_0044 _H	DMACB3	DMAC3 configuration B register
	FFFD_0048 _H	DMACSA3	DMAC3 source address register
	$FFFD_004C_H$	DMACDA3	DMAC3 destination address register
	$FFFD_{0050_{H}}$	DMACA4	DMAC4 configuration A register
	$FFFD_{0054_{H}}$	DMACB4	DMAC4 configuration B register
	$FFFD_{0058_{H}}$	DMACSA4	DMAC4 source address register
	$FFFD_005C_H$	DMACDA4	DMAC4 destination address register
	FFFD_0060 _H	DMACA5	DMAC5 configuration A register
	FFFD_0064 _H	DMACB5	DMAC5 configuration B register
	$FFFD_0068_H$	DMACSA5	DMAC5 source address register
	FFFD_006C _H	DMACDA5	DMAC5 destination address register
	FFFD_0070 _H	DMACA6	DMAC6 configuration A register
	FFFD_0074 _H	DMACB6	DMAC6 configuration B register
	FFFD_0078 _H	DMACSA6	DMAC6 source address register
	$FFFD_007C_H$	DMACDA6	DMAC6 Destination address register
	FFFD_0080 _H	DMACA7	DMAC7 configuration A register
	FFFD_0084 _H	DMACB7	DMAC7 configuration B register

Module name	Address	Register name	Explanation	
DMAC	FFFD_0088 _H	DMACSA7	DMAC7 source address register	
	FFFD_008C _H	DMACDA7	DMAC7 destination address register	
	FFFD_0090 _H - FFFD_FFFF _H	Reserved	Access prohibited	
Timer	FFFE_0000 _H	TMR0LD	Timer 1 load value	
	FFFE_0004 _H	TMR0VAL	Timer 1 current value	
	FFFE_0008 _H	TMR0CTL	Timer 1 control register	
	FFFE_000C _H	TMR0IC	Timer 1 interrupt clear register	
	FFFE_0010 _H	TMR0RIS	Timer 1 interrupt status	
	FFFE_0014 _H	TMR0MIS	Interrupt status to which Timer 1 masks	
	FFFE_0018 _H	TMR0BGL	Timer 1 background load value	
	FFFE_001C _H	Reserved	Access prohibited	
	FFFE_0020 _H	TMR1LD	Timer 2 load value	
	FFFE_0024 _H	TMR1VAL	Timer 2 current value	
	FFFE_0028 _H	TMR1CTL	Timer 2 control registers	
	FFFE_002C _H	TMR1IC	Timer 2 interrupt clear register	
	FFFE_0030 _H	TMR1RIS	Timer 2 interrupt status	
	FFFE_0034 _H	TMR1MIS	Interrupt status to which Timer 2 masks	
	FFFE_0038 _H	TMR1BGL	Timer 2 background load value	
	FFFE_003C _H -	Reserved	Access prohibited	
	FFFE_0FFF _H			
UART0	FFFE_1000 _H	URTORFR	Reception FIFO register (read only at DLAB = 0) When it accesses RFR by byte long in the big endian mode, address becomes $FFFE_{1003_{H}}$.	
		URT0TFR	Transmission FIFO register (write only at DLAB = 0) When it accesses TFR by byte long in the big endian mode, address becomes $FFFE_{1003_{H}}$.	
		URT0DLL	Dividing frequency value (lower byte at DLAB = 1) When it accesses DLL by byte long in the big endian mode, address becomes $FFFE_{1003_{H}}$.	
	FFFE_1004 _H	URTOIER	DLAB = 0: Interrupt enable register	
		URT0DLM	DLAB = 1: Dividing frequency value (upper byte)	
	FFFE_1008 _H	URTOIIR	Interrupt ID register (read only)	
		URT0FCR	FIFO control register (write only)	
	FFFE_100C _H	URTOLCR	Line control register	
	FFFE_1010 _H	URTOMCR	Modem control register	
	FFFE_1014 _H	URTOLSR	Line status register	
	FFFE_1018 _H	URTOMSR	Modem status register	
	FFFE_101C _H - FFFE_1FFF _H	Reserved	Access prohibited	
UART1	FFFE_2000 _H	URT1RFR	Transmission FIFO register (read only at DLAB = 0) When it accesses RFR by byte long in the big endian mode, address becomes $FFFE_2003_{H}$.	
		URT1TFR	Transmission FIFO register (write only at DLAB = 0) When it accesses TFR by byte long in the big endian mode, address becomes $FFFE_2003_{H}$.	
		URTIDLL	Dividing frequency value (lower byte at DLAB = 1) When it accesses DLL by byte long in the big endian mode, address becomes $FFFE_{2003_{H}}$.	
	FFFE_2004 _H	URT1IER	DLAB = 0: Interrupt enable register.	
		URT1DLM	DLAB = 1: Dividing frequency value (upper byte)	
	FFFE_2008 _H	URT1IIR	Interrupt ID register (read only)	
		URT1FCR	FIFO control register (write only)	

Module name	Address	Register name	Explanation
UART1	FFFE_200C _H	URT1LCR	Line control register
	FFFE_2010 _H	URT1MCR	Modem control register
	FFFE_2014 _H	URT1LSR	Line status register
	FFFE_2018 _H	URT1MSR	Modem status register
	FFFE_201C _H - FFFE_3FFF _H	Reserved	Access prohibited
External interrupt controller (EXIRC)	FFFE_4000 _H	EIENB	External interrupt enable register
	FFFE_4004 _H	EIREQ	External interrupt request register
	FFFE_4008 _H	EILVL	External interrupt level register
	FFFE_401C _H - FFFE_47FF _H	Reserved	Access prohibited
No module	FFFE_4800 _H - FFFE_5FFF _H	Reserved	Access prohibited
Remap boot controller (RBC)	FFFE_6000 _H	Reserved	Access prohibited
	FFFE_6004 _H	RBREMAP	Remap control register
	FFFE_6008 _H	RBVIHA	VINITHI control register A
	FFFE_600C _H	RBITRA	INITRAM control register A
	FFFE_6010 _H - FFFE_6FFF _H	Reserved	Access prohibited
Clock reset generator (CRG)	FFFE_7000 _H	CRPR	PLL control register
	FFFE_7004 _H	Reserved	Access prohibited
	FFFE_7008 _H	CRWR	Watchdog timer control register
	$FFFE_700C_H$	CRSR	Reset/Standby control register
	FFFE_7010 _H	CRDA	Clock division control register A
	FFFE_7014 _H	CRDB	Clock division control register B
	FFFE_7018 _H	CRHA	AHB(A) bus clock gate control register
	FFFE_701C _H	CRPA	APB(A) bus clock gate control register
	FFFE_7020 _H	CRPB	APB(B) bus clock gate control register
	FFFE_7024 _H	CRHB	AHB(B) bus clock gate control register
	FFFE_7028 _H	CRAM	ARM core clock gate control register
	FFFE_702C _H - FFFE_7FFF _H	Reserved	Access prohibited
Interrupt controller 0 (IRC0)	FFFE_8000 _H	IR0IRQF	IRQ flag register
	FFFE_8004 _H	IR0IRQM	IRQ mask register
	FFFE_8008 _H	IR0ILM	Interrupt level mask register
	FFFE_800C _H	IR0ICRMN	ICR monitoring register
	FFFE_8010 _H	Reserved	Access prohibited
	FFFE_8014 _H	IR0SWIR0	Software interrupt control register 0
	FFFE_8018 _H	IR0SWIR1	Software interrupt control register 1
	FFFE_801C _H	IR0TBR	Table base register
	FFFE_8020 _H	IROVCT	Interrupt vector register
	FFFE_8024 _H	Reserved	Access prohibited
	FFFE_8028 _H	Reserved	Access prohibited
	FFFE_802C _H	Reserved	Access prohibited
	FFFE_8030 _H	IR0ICR0	Interrupt control register 00
	FFFE_8034 _H	IR0ICR1	Interrupt control register 01

Module name	Address	Register name	Explanation
Interrupt controller 0 (IRC0)	FFFE_8038 _H	IR0ICR2	Interrupt control register 02
(inteo)	FFFE_803C _H	IR0ICR3	Interrupt control register 03
	FFFE_8040 _H	IR0ICR4	Interrupt control register 04
	FFFE_8044 _H	IR0ICR5	Interrupt control register 05
	FFFE_8048 _H	IR0ICR6	Interrupt control register 06
	FFFE_804C _H	IR0ICR7	Interrupt control register 07
	FFFE_8050 _H	IR0ICR8	Interrupt control register 08
	FFFE_8054 _H	IR0ICR9	Interrupt control register 09
	FFFE_8058 _H	IR0ICR10	Interrupt control register 10
	FFFE_805C _H	IR0ICR11	Interrupt control register 11
	FFFE_8060 _H	IR0ICR12	Interrupt control register 12
	FFFE_8064 _H	IR0ICR13	Interrupt control register 13
	FFFE_8068 _H	IR0ICR14	Interrupt control register 14
	FFFE_806C _H	IR0ICR15	Interrupt control register 15
	FFFE_8070 _H	IR0ICR16	Interrupt control register 16
	FFFE_8074 _H	IR0ICR17	Interrupt control register 17
	FFFE_8078 _H	IR0ICR18	Interrupt control register 18
	FFFE_807C _H	IR0ICR19	Interrupt control register 19
	FFFE_8080 _H	IR0ICR20	Interrupt control register 20
	FFFE_8084 _H	IR0ICR21	Interrupt control register 21
	FFFE_8088 _H	IR0ICR22	Interrupt control register 22
	FFFE_808C _H	IR0ICR23	Interrupt control register 23
	FFFE_8090 _H	IR0ICR24	Interrupt control register 24
	FFFE_8094 _H	IR0ICR25	Interrupt control register 25
	FFFE_8098 _H	IR0ICR26	Interrupt control register 26
	FFFE_809C _H	IR0ICR27	Interrupt control register 27
	FFFE_80A0 _H	IR0ICR28	Interrupt control register 28
	FFFE_80A4 _H	IR0ICR29	Interrupt control register 29
	FFFE_80A8 _H	IR0ICR30	Interrupt control register 30
	FFFE_80AC _H	IR0ICR31	Interrupt control register 31
	FFFE_80B0 _H - FFFE_8FFF _H	Reserved	Access prohibited
GPIO	FFFE_9000 _H	GPDR0	Port data register 0 When it accesses PDR0 by byte long in the big endian mode, address becomes FFFE_9003 _H .
	FFFE_9004 _H	GPDR1	Port data register 1 When it accesses PDR1 by byte long in the big endian mode, address becomes FFFE_9007 _H .
	FFFE_9008 _H	GPDR2	Port data register 2 When it accesses PDR2 by byte long in the big endian mode, address becomes FFFE_900B _H .
	FFFE_900C _H	Reserved	Access prohibited
	FFFE_9010 _H	GPDDR0	Data direction register 0
	FFFE_9014 _H	GPDDR1	Data direction register 1
	FFFE_9018 _H	GPDDR2	Data direction register 2
	FFFE_901C _H - FFFE_9FFF _H	Reserved	Access prohibited
No module	FFFE_A000 _H - FFFE_FFFF _H	Reserved	Access prohibited
	FFFF_0000 _H - FFFF_FDFF _H	Not Register Area	For external area.

Module name	Address	Register name	Explanation		
Interrupt	FFFF_FE00 _H	IR0IRQF	IRQ flag register		
controller 0					
(mirror) (IRC0 mirror)					
,	FFFF_FE04 _H	IR0IRQM IRQ mask register			
	FFFF_FE08 _H	IROILM	Interrupt level mask register		
	FFFF_FE0C _H	IR0ICRMN	ICR monitoring register		
	FFFF_FE10 _H	Reserved	Access prohibited		
	FFFF_FE14 _H	IR0DICR0	Software interrupt control register 0		
	FFFF_FE18 _H	IR0DICR1	Software interrupt control register 1		
	FFFF_FE1C _H	IR0TBR	Table base register		
	FFFF_FE20 _H	IR0VCT	Interrupt vector register		
	FFFF_FE24 _H - FFFF_FE2F _H	Reserved	Access prohibited		
	FFFF_FE30 _H	IR0ICR0	Interrupt control register 00		
	FFFF_FE34 _H	IR0ICR1	Interrupt control register 01		
	FFFF_FE38 _H	IR0ICR2	Interrupt control register 02		
	FFFF_FE3C _H	IR0ICR3	Interrupt control register 03		
	FFFF_FE40 _H	IR0ICR4	Interrupt control register 04		
	FFFF_FE44 _H	IR0ICR5	Interrupt control register 05		
	FFFF_FE48 _H	IR0ICR6	Interrupt control register 06		
	FFFF_FE4C _H	IR0ICR7	Interrupt control register 07		
	FFFF_FE50 _H	IR0ICR8	Interrupt control register 08		
	FFFF_FE54 _H	IR0ICR9	Interrupt control register 09		
	FFFF_FE58 _H	IR0ICR10	Interrupt control register 10		
	FFFF_FE5C _H	IR0ICR11	Interrupt control register 11		
	FFFF_FE60 _H	IR0ICR12	Interrupt control register 12		
	FFFF_FE64 _H	IR0ICR13	Interrupt control register 13		
	FFFF_FE68 _H	IR0ICR14	Interrupt control register 14		
	FFFF_FE6C _H	IR0ICR15	Interrupt control register 15		
	FFFF_FE70 _H	IR0ICR16	Interrupt control register 16		
	FFFF_FE74 _H	IR0ICR17	Interrupt control register 17		
	FFFF_FE78 _H	IR0ICR18	Interrupt control register 18		
	FFFF_FE7C _H	IR0ICR19	Interrupt control register 19		
	FFFF_FE80 _H	IR0ICR20	Interrupt control register 20		
	FFFF_FE84 _H	IR0ICR21	Interrupt control register 21		
	FFFF_FE88 _H	IR0ICR22	Interrupt control register 22		
	FFFF_FE8C _H	IR0ICR23	Interrupt control register 23		
	FFFF_FE90 _H	IR0ICR24	Interrupt control register 24		
	FFFF_FE94 _H	IR0ICR25	Interrupt control register 25		
	FFFF_FE98 _H	IR0ICR26	Interrupt control register 26		
	FFFF_FE9C _H	IR0ICR27	Interrupt control register 27		
	FFFF_FEA0 _H	IR0ICR28	Interrupt control register 28		
	FFFF_FEA4 _H	IR0ICR29	Interrupt control register 29		
	FFFF_FEA8 _H	IR0ICR30	Interrupt control register 30		
	FFFF_FEAC _H	IR0ICR31	Interrupt control register 31		
	FFFF_FEB0 _H - FFFF_FEFF _H	Reserved	Access prohibited		

4. CPU (ARM926EJ-S core part)

This chapter describes CPU (ARM926EJ-S core part) of MB86R01.

4.1. Outline

ARM926EJ-S core part chiefly includes functional blocks such as ARM926EJ-S, TCM (Tightly Coupled Memory), and ETM9CS Single.

4.2. Feature

ARM926EJ-S core part has following features:

- Five stage pipeline (fetch, decode, execution, memory, and write)
- Harvard architecture
- 16KB instruction cache/16KB data cache
- 16KB instruction TCM (ITCM)/16KB data TCM (DTCM)
- JAVA acceleration (Jazelle technology)
- Coprocessor interface
- Supported MMU (Memory Management Unit)
- Built-in ETM9CS Single for real-time trace
- Corresponded to big endian and little endian

4.3. Block diagram

Figure 4-1 shows ARM926EJ-S core part's block diagram.

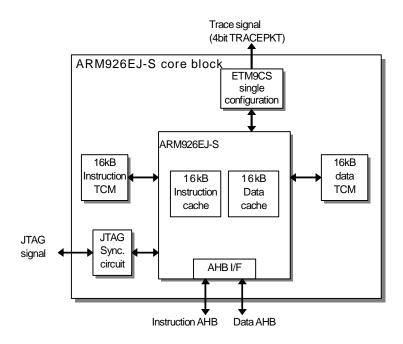


Figure 4-1 Block diagram of ARM926EJ-S core part

4.4. ARM926EJ-S and ETM setting

ARM926EJ-S cache size, both instruction and data, is set to 16KB as well as ITCM and DTCM.

MB86R01 has ETM9CS Single for real-time trace, and 4 bits are supported for TRACEPKT port of ETM9CS Single.

Refer to related material of ARM Ltd. such as shown below for detailed specification of ARM926EJ-S and ETM9CS Single.

ARM926EJ-S

ARM926EJ-S product overview

- ARM926EJ-S (r0p4/r0p5) Technical Reference Manual (DDI0198D)
- ARM9EJ-S Revision r1p2 Technical Reference Manual DDI0222B)
- ARM926EJ-S Product Overview (DVI0035B)

They are found in the following URL. http://infocenter.arm.com/help/index.jsp

ETM9CS single

- CoreSight ETM9 r0p0 Technical Reference Manual (DDI0315A)
- ETM9 Revision r2p2 Technical Reference Manual (DDI0157F)
- Embedded Trace Macrocell Architecture Specification (IHI0014N)
- CoreSight System Design Guide (DGI0012A)

They are found in the following URL.

http://www.arm.com/documentation/Trace Debug/index.html

5. Clock reset generator (CRG)

This chapter describes function and operation of clock reset generator (CRG.)

5.1. Outline

CRG controls clock/reset of ARM926EJ-S, AHB, and APB module.

5.2. Feature

CRG has the following features:

- Clock generator
 - Both PLL clock and external input clock (PLL by-pass mode) are operable
 - PLL control
 - a- Control of PLL oscillation and stop
 - b-Control of PLL oscillation stabilization waiting time
 - Clock gear control
 - Clock frequency of ARM core, AXI, AHB, and APB can be changed respectively
 - Supply/Stop control of clock to ARM core, AXI, AHB, and APB module
- Reset generator
 - Generation of internal reset from external reset
 - Generation of software reset
 - Input/Output control of XSRST signal for JTAG ICE
 - Generation of XTRST (TAP controller's reset) signal
- Others
 - Watchdog timer function
 - Corresponding to stop mode which halts all clocks of MB86R01

5.3. Block diagram

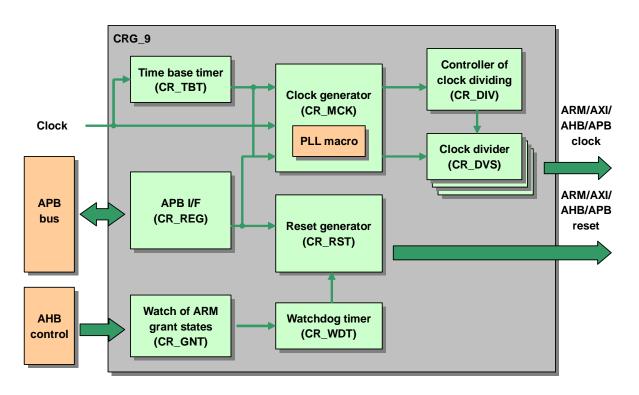


Figure 5-1 shows block diagram of clock reset generator (CRG.)

Figure 5-1 Block diagram of clock reset generator (CRG)

Table 5-1 shows function of the block included in CRG.

Table 5-1	Individual block function
-----------	---------------------------

Block	Function
CR_RST	Generation of reset signal
CR_MCK	PLL control/bypass
CR_GNT	ARM's grant status watch
CR_DIV	Generation of clock frequency dividing and clock enable signal
CR_DVS	Selection of clock frequency dividing and non clock frequency dividing
CR_TBT	Count of following items: • PLL oscillation stabilization waiting time • PLL reset's pulse width • Watchdog timer's clear timing • Software reset's pulse width
CR_REG	Control register
CR_WDT	Watchdog timer

5.4. Register

This section describes CRG register.

5.4.1. Register list

Table 5-2 shows list of CRG register.

Addre	SS	Register name	Abbreviation	Explanation
Base	Offset		1200101200	Pullation
$FFFE_7000_{H}$	$+00_{\rm H}$	PLL control register	CRPR	To control PLL
	$+ 04_{\rm H}$	(Reserved)	—	Reserved area, access prohibited
	$+ 08_{H}$	Watchdog timer control register	CRWR	To control watchdog timer
	$+ 0C_{H}$	Reset/Standby control register	CRSR	To control reset/standby
	+ 10 _H	Clock frequency dividing control register A	CRDA	To control clock divider
	+ 14 _H	Clock frequency dividing control register B	CRDB	To control clock divider
	+ 18 _H	AHB(A) bus clock gate control register	CRHA	To control clock gate of AHB(A) bus
	+ 1C _H	APB(A) bus clock gate control register	CRPA	To control clock gate of APB(A) bus
	+ 20 _H	APB(B) bus clock gate control register	CRPB	To control clock gate of APB(B) bus
	+ 24 _H	AHB(B) bus clock gate control register	CRHB	To control clock gate of AHB(B) bus
	+ 28 _H	ARM core clock gate control register	CRAM	To control clock gate of ARM core
	+ 2C _H - + FF _H	(Reserved)	-	Reserved area, access prohibited

Table 5-2CRG register list

Description format of register

Following format is used for description of register's each bit in "5.4.2 PLL control register (CRPR)" to "5.4.11 ARM core clock gate control register (CRAM)".

Address		Base address + Offset														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

5.4.2. PLL control register (CRPR)

This register controls PLL.

Address		$FFFE_7000_H + 00_H$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-	-	_	-	-	-		_	1	-	-	-	1	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved)							PLLRDY	*1	LUWMO	DDE[1:0]		PLI	LMODE[4	4:0]	
R/W	R0	R0	R0	R0	R0	R0	R0	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0 *2	1	0	1 *3	1 *3	1 *3	1 *3	1 *3

*1: PLLBYPASS

*2: This follows external pin, PLLBYPASS

*3: This changes according to setting value of external pin, CRIPM[3:0] and PLLBYPASS

	Bit field	Description
No.	Name	Description
31-16	_	Unused bits. Write access is ignored, and read value of these bits is undefined.
15-9	(Reserved)	Reserved bits. Write access is ignored, and read value of these bits are always "0".
8	PLLRDY	PLLREADY monitoring This bit monitors internal signal, PLLREADY with external pin CLK clock. The PLLREADY signal shows overflow of the value selected at LUMMODE[1:0] bit by the timer which calculates PLL oscillation stabilization waiting time. 0 PLLREADY signal is "low" (initial value) 1 PLLREADY signal is "high" Write access to this bit is ignored. Note: PLLRDY=1 does not guarantee that PLL is locked and clock supply is ready.
7	PLLBYPASS	PLL bypass mode This bit bypasses PLL. 0 PLL clock is used. 1 PLL is bypassed Note: Do not change PLLBYPASS bit and PLLMODE[4:0] at the same time since clock switch of both external pin CLK and PLL clocks needs to be changed. If they are changed at the same time, CRG detects PLL oscillation frequency change and state becomes PLL oscillation stabilization waiting before PLL bypass mode. Reference: The initial value of this bit is settable with setting external pin, PLLBYPASS.

FUJITSU

	Bit field								
No.	Name	Description							
6-5	LUWMODE[1:0]	<u>PLL lockup waiting mode</u> These bits are used to set PLL oscillation stabilization wait time.							
		00 $T_{CLK} \times (2^{n0} - 2^m + 1)$							
		01 $T_{CLK} \times (2^{n1} - 2^m + 1)$							
		10 $T_{CLK} \times (2^{n^2} - 2^m + 1)$ (initial value)							
		11 $T_{CLK} \times (2^{n3} - 2^m + 1)$							
		T _{CLK} : Cycle time of external pin CLK							
		n0 = 11							
		n1 = 12 n2 = 13							
		$n^{2} = 13$ $n^{3} = 14$							
		m = 8							
		The wait time depends on CLK cycle time and PLL lock-up time, moreover it does not need to be changed from the initial value.							
4-0	PLLMODE[4:0]	<u>PLL oscillation mode</u> These bits are used to set PLL oscillation mode.							
		Initial value of PLLMODE[4:0] bit changes according to the setting of external pin,							
		CRIPM[3:0]. Initial value of these bits is PLLMODE[4:0] = {PLLBYPASS, CRIPM[3],							
		CRIPM[2], CRIPM[1], CRIPM[0].}							
		00000 $f_{CCLK} = f_{CLK} \times 24.5 \ (49 \times 1/2)$							
		00001 $f_{CCLK} = f_{CLK} \times 23 (46 \times 1/2)$							
		00010 $f_{CCLK} = f_{CLK} \times 18.5 (37 \times 1/2)$							
		00011 $f_{CCLK} = f_{CLK} \times 10 (20 \times 1/2)$							
		$\begin{array}{cc} 00100 & f_{CCLK} = f_{CLK} \times 23.5 \ (47 \times 1/2) \end{array}$							
		$\begin{array}{c} 00101 f_{CCLK} = f_{CLK} \times 22 \ (44 \times 1/2) \\ \hline 00100 g_{CLK} = f_{CLK} \times 22 \ (44 \times 1/2) \\ \hline 00100 g_{CLK} = f_{CLK} \times 22 \ (44 \times 1/2) \\ \hline 00100 g_{CLK} = f_{CLK} \times 22 \ (44 \times 1/2) \\ \hline 00100 g_{CLK} = f_{CLK} \times 22 \ (44 \times 1/2) \\ \hline 00100 g_{CLK} = f_{CLK} \times 22 \ ($							
		$\begin{array}{c} 00110 f_{CCLK} = f_{CLK} \times 18 \ (36 \times 1/2) \\ 00111 f_{CCLK} =$							
		$\begin{array}{ c c c c c c }\hline 00111 & f_{CCLK} = f_{CLK} \times 9.5 \ (19 \times 1/2) \\\hline 01000 & f_{CCLK} = f_{CLK} \times 19.5 \ (39 \times 1/2) \\\hline \end{array}$							
		$\begin{array}{ c c c c c c }\hline 01000 & f_{CCLK} = f_{CLK} \times 19.5 \ (39 \times 1/2) \\ \hline 01001 & f_{CCLK} = f_{CLK} \times 19 \ (38 \times 1/2) \\ \hline \end{array}$							
		$\begin{array}{c} 01001 & I_{CCLK} - I_{CLK} \times 19 (38 \times 1/2) \\ \hline 01010 & f_{CCLK} = f_{CLK} \times 15 (30 \times 1/2) \end{array}$							
		$\begin{array}{c} 01010 & 12CLK - 12(K \times 15(50 \times 1/2)) \\ \hline 01011 & f_{CCLK} = f_{CLK} \times 7.5(15 \times 1/2) \end{array}$							
		11111 PLL stops							
		Others Reserved (setting prohibited)							
		f _{CCLK} : Clock frequency of CCLK							
		f_{CLK} : Clock frequency of external pin CLK							
		Note: Do not change PLLMODE[4:0] when PLLBYPASS bit is 0.							

5.4.3. Watchdog timer control register (CRWR)

This register controls watchdog timer.

Address		$\mathbf{FFFE}_{7000_{\mathbf{H}}} + 08_{\mathbf{H}}$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-	-	_	-	1	-	-	-	-		_		-	_	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved)								ERST	(Rese	erved)	TBR	WDRST	WDTSET/ WDTCLR	WDTMO	DDE[1:0]
R/W	R0	R0	R0	R0	R0	R0	R0	R0	R/W0	R0	R0/W0*	R/W1	R /W0	R/W1	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	1	0	0	0	Х	0	0	0

*: Do not set "1" to bit 5

	Bit field	Description
No.	Name	Description
31-16	_	Unused bits. Write access is ignored, and read value of these bits is undefined.
15-8	(Reserved)	Reserved bits. Write access is ignored, and read value of these bits are always "0".
7	ERST	Internal reset of ERSTn monitoring This bit monitors internal signal of ERSTn. 0 ERSTn bit is cleared 1 It is indicated that external reset (XRST) is asserted (initial value)
		The initial value of this bit is set to 1 by falling edge of ERSTn, and writing "1" is ignored. This bit is set by ERSTn.
6	(Reserved)	Reserved bits. Write access is ignored, and read value of this bit is always "0".
5	(Reserved)	Reserved bit, always write 0. Read value of this bit is always "0".
4	TBR	<u>Time based timer reset request</u> This bit resets the time based timer, and its reset signal is asserted during 1 cycle of APB clock.
		0 Time based timer is not reset (initial value)
		1 Time based timer is reset
		Writing 0 is ignored. The time base timer is always counted. Therefore, reset the time base timer before starting the watchdog timer.
3	WDRST	Watchdog reset monitoring This bit monitors watchdog reset.
		0 Watchdog reset is not asserted
		1 Watchdog reset is asserted
		The initial value of this bit is undefined, and writing 1 is ignored. When watchdog is reset, this bit is set to "1".

FUJITSU

	Bit field	Deconintion
No.	Name	Description
2	WDTSET /WDTCLR	Setting and clear of watchdog timer This bit sets and clears watchdog timer which starts count at writing "1" and clears at writing "1" from the second time.
		0 The watchdog timer is not set (initial value) 1 First time: The watchdog timer starts Second time and later: The watchdog timer is cleared Writing 0 is ignored.
1-0	WDTMODE[1:0]	These bits set timing to clear watchdog timer. Watchdog reset occurs at following periods when "1" is written to WDTSET/WDTCLR bits at the end. $ \begin{array}{r} 00 & T_{CLK} \times 2^{n0} \sim T_{CLK} \times 2^{(n0+1)} \text{ (initial value)} \\ \hline 01 & T_{CLK} \times 2^{n1} \sim T_{CLK} \times 2^{(n1+1)} \\ \hline 10 & T_{CLK} \times 2^{n2} \sim T_{CLK} \times 2^{(n2+1)} \\ \hline 11 & T_{CLK} \times 2^{n3} \sim T_{CLK} \times 2^{(n3+1)} \\ \hline T_{CLK}: Cycle time of external pin CLK \\ n0 = 9 \\ n1 = 12 \\ n2 = 14 \\ n3 = 16 \\ Select the bit that corresponds to the system. \end{array} $

5.4.4. Reset/Standby control register (CRSR)

This register controls reset and standby.

Address							FF	FE_70	$00_{\rm H} + 0$	C _H						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-		-	-	-	-	-		-	-	1	-	-		-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				STOPEN	(Rese	rved)	Reserved	SRST	SWRST		SWRM ODE
R/W	R0	R0	R0	R0	R0	R0	R0	R0	R/W	R0	R0	R /W0	R /W0	R /W0	R/W1	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	0	0

	Bit field	Description
No.	Name	
31-16	_	Unused bits. Write access is ignored, and read value of these bits is undefined.
15-8	(Reserved)	Reserved bits. Write access is ignored, and read value of these bits are always "0".
7	STOPEN	Stop mode enable This bit stops all bus clock operations in the standby mode. 0 Bus clock operation in the standby mode does not stop (initial value) 1 All bus clock operations in the standby mode are stopped Note: When changing state to stop mode, write "1" to PLLBYPASS bit of CRPR.
6-5	(Reserved)	Reserved bits. Write access is ignored, and read value of these bits are always "0".
4	(Reserved)	Reserved bit. Always write "0" to write access.
3	SRST	nSRST monitoring This bit monitors nSRST reset from ICE. 0 nSRST is not asserted 1 nSRST is asserted Initial value of this bit is undefined, and writing "0" is ignored. When nSRST occurs, this bit is set to "1".
2	SWRST	Software reset monitoring This bit monitors software reset. 0 Software reset is not asserted 1 Software reset is asserted Initial value of this bit is undefined, and writing "0" is ignored. When software reset occurs, this bit is set to "1".
1	SWRSTREQ	Software reset request This bit asserts software reset. 0 Software reset is not requested (initial value) 1 Software reset is requested Writing 0 is ignored, and this bit is cleared with reset signal.

	Bit field	Description
No.	Name	
0	SWRMODE	<u>Pulse width mode of software reset</u> This bit sets pulse width of software reset.
		$0 T_{CLK} \times (2^{n0+3}) + T_{CCLK} \times 7 \text{ (initial value)}$
		$1 T_{\text{CLK}} \times (2^{n1+3}) + T_{\text{CCLK}} \times 7$
		T_{XCLK} : Cycle time of external pin CLK T_{CCLK} : Cycle time of internal signal CCLK
		n0 = 7 n1 = 12
		Pulse width of software reset depends on the CLK cycle time and internal operation frequency setting. Select the bit that corresponds to the system.

5.4.5. Clock divider control register A (CRDA)

This register controls clock divider.

Address		$FFFE_7000_H + 10_H$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved) ARMBDM[2:0]		:0]	ARMADM[2:0]			PBDM[2:0]]	PADM[2:0]]	H	HADM[2:0]		
R/W	R0	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	1	0	0	0	0	1	1	0	1	1	0	1	0

	Bit field	Description						
No.	Name	Description						
31-16	_	Unused bits. Write access is ignored, and read value of these bits is undefined.						
15	(Reserved)	eserved bit. /rite access is ignored, and read value of these bits are always "0".						
14-12	ARMBDM[2:0]	<u>ARMBCLK frequency dividing mode</u> These bits set frequency dividing ratio of ARMBCLK.						
		$000 f_{ARMBCLK} = f_{CCLK} \times (1/1)$						
		001 $f_{ARMBCLK} = f_{CCLK} \times (1/2)$ (initial value)						
		$010 f_{\text{ARMBCLK}} = f_{\text{CCLK}} \times (1/4)$						
		011 $f_{ARMBCLK} = f_{CCLK} \times (1/8)$						
		$100 f_{ARMBCLK} = f_{CCLK} \times (1/16)$						
		Others Reserved (setting prohibited)						
		f _{ARMBCLK} : Clock frequency of ARMBCLK f _{CCLK} : Clock frequency of CCLK						
11-9	ARMADM[2:0]	ARMACLK dividing mode These bits set frequency dividing ratio of ARMACLK.						
		000 $f_{ARMACLK} = f_{CCLK} \times (1/1)$ (initial value)						
		$001 f_{ARMACLK} = f_{CCLK} \times (1/2)$						
		$010 f_{ARMACLK} = f_{CCLK} \times (1/4)$						
		$011 f_{ARMACLK} = f_{CCLK} \times (1/8)$						
		$100 f_{ARMACLK} = f_{CCLK} \times (1/16)$						
		Others Reserved (setting prohibited)						
		f _{ARMBCLK} : Clock frequency of ARMACLK f _{CCLK} : Clock frequency of CCLK						

FUJITSU

	Bit field	Description		
No.	Name	Description		
8-6	PBDM[2:0]	BCLK frequency dividing mode hese bits set frequency dividing ratio of PBCLK.	<u>PBCLK f</u> These bit	
		$000 f_{PBCLK} = f_{CCLK} \times (1/1)$	000	r I
		$001 f_{PBCLK} = f_{CCLK} \times (1/2)$	001	
		010 $f_{PBCLK} = f_{CCLK} \times (1/4)$	010	
		011 $f_{PBCLK} = f_{CCLK} \times (1/8)$ (initial value)	011	
		$100 f_{PBCLK} = f_{CCLK} \times (1/16)$	100	
		Others Reserved (setting prohibited)	Others	
		PBCLK : Clock frequency of PBCLK CCLK : Clock frequency of CCLK		
5-3	PADM[2:0]	ACLK frequency dividing mode hese bits set frequency dividing ratio of PACLK.		
		$000 f_{PACLK} = f_{CCLK} \times (1/1)$	000	
		$001 f_{PACLK} = f_{CCLK} \times (1/2)$	001	
		010 $f_{PACLK} = f_{CCLK} \times (1/4)$	010	
		011 $f_{PACLK} = f_{CCLK} \times (1/8)$ (initial value)	011	
		$100 f_{PACLK} = f_{CCLK} \times (1/16)$	100	
		Others Reserved (setting prohibited)	Others	
		P _{ACLK} : Clock frequency of PACLK _{CCLK} : Clock frequency of CCLK		
2-0	HADM[2:0]	ACLK frequency dividing mode hese bits set frequency dividing ratio of HACLK.		
		$f_{\text{HACLK}} = f_{\text{CCLK}} \times (1/1)$	000	1
		$f_{\text{HACLK}} = f_{\text{CCLK}} \times (1/2)$	001	
		010 $f_{HACLK} = f_{CCLK} \times (1/4)$ (initial value)	010	
		011 $f_{HACLK} = f_{CCLK} \times (1/8)$	011	
		$100 f_{\text{HACLK}} = f_{\text{CCLK}} \times (1/16)$	100	
		Others Reserved (setting prohibited)	Others	
		HACLK : Clock frequency of HACLK CCLK : Clock frequency of CCLK		

Note:

ARMACLK must not be slower than HACLK; moreover, HACLK must not be slower than PACLK.

 $f_{ARMCLK} >= f_{HACLK} >= f_{PACLK}$

5.4.6. Clock divider control register B (CRDB)

This register controls clock divider.

Address		$FFFE_7000_H + 14_H$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-		1	-	-	-	-	1	-	-	-	-	-	1	_	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							(Reserved))						H	HBDM[2:0)]
R/W	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

	Bit field		Description
No.	Name		Description
31-16	_	Unused bits. Write access is	s ignored, and read value of these bits is undefined.
15-3	(Reserved)	Reserved bits. Write access is	s ignored, and read value of these bits are always "0".
2-0	HBDM[2:0]		ency dividing mode frequency dividing ratio of HBCLK.
		HBDM[2:0]	Frequency dividing ratio of HBCLK
		000	$f_{\text{HBCLK}} = f_{\text{CCLK}} \times (1/1)$
		001	$f_{\text{HBCLK}} = f_{\text{CCLK}} \times (1/2)$ (initial value)
		010	$f_{\text{HBCLK}} = f_{\text{CCLK}} \times (1/4)$
		011	$f_{\rm HBCLK} = f_{\rm CCLK} \times (1/8)$
		100	$f_{\text{HBCLK}} = f_{\text{CCLK}} \times (1/16)$
		Others	Reserved (setting prohibited)
			k frequency of HBCLK frequency of CCLK

5.4.7. AHB (A) bus clock gate control register (CRHA)

This register controls clock gate of AHB (A) bus.

Address							FF	FE_70	00 _H + 1	8 _H						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-		1	-	-	-	-	1	_		-		-	_	_	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							1	HAGA	TE[15:0]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

	Bit field		Description
No.	Name		Description
31-16	-	Unused bits. Write access is i	ignored, and read value of these bits is undefined.
15-0	HAGATE[15:0]	HACLK clock s These bits contr	gate control ol HACLK clock gate.
		HAGATE[n]	Description
		0	HACLKn stops
		1	HACLKn does not stop (initial value)
		HACLK1: Exte HACLK2: SRA HACLK3: HDM HACLK4: (Res HACLK5: Boot HACLK6: (Res HACLK6: (Res HACLK7: I2S_ HACLK8: USB HACLK9: USB HACLK10: SD	AAC erved) ROM erved) 0, I2S_1, I2S_2 2.0 FUNC, DMAC 2.0 host I/F 666, IDE66 DMAC B C served)

5.4.8. APB (A) bus clock gate control register (CRPA)

This register controls clock gate of APB (A) bus.

Address							FF	FE_70	$00_{\rm H} + 1$	C _H						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-		-	-	1	-	-		-	1	1		-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								PAGAT	E[15:0]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

	Bit field		Description
No.	Name		Description
31-16	_	Unused bits. Write access is ign	ored, and read value of these bits is undefined.
15-0	PAGATE[15:0]	PACLK clock gate These bits control	<u>control</u> PACLK clock gate.
		PAGATE[n]	Description
		0	PACLKn stops
		1	PACLKn does not stop (initial value)
		PACLK8: UART2, PACLK9: ADC × 2 PACLK10: PWM 2 PACLK11: SPI PACLK12: CCNT PACLK13: UART4	mer (I2C_0, I2C_1) 2 (CAN_0, CAN_1) , UART3 2 (ADC0, ADC1) 2ch 4, UART5 CSSingle APB port

5.4.9. APB (B) bus clock gate control register (CRPB)

Address							FF	FE_70	$00_{\rm H} + 2$	20 _H						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	_	-	1	-	-	-	-	-		-	-	-	_	_	-	_
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								PBGAT	E[15:0]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

This register controls clock gate of APB (B) bus.

	Bit field		Description
No.	Name		Description
31-16	_	Unused bits. Write access is	ignored, and read value of these bits is undefined.
15-0	PBGATE[15:0]	These bits contr This LSI does n	ol PBCLK clock gate. tot use them.
		PBGATE[n]	Description
		0	PBCLKn stops
		1	PBCLKn does not stop (initial value)

5.4.10. AHB (B) bus clock gate control register (CRHB)

This register controls clock gate of AHB (B) bus.

Address		$FFFE_7000_H + 24_H$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		-	-	_	_	_	_	-	-	-	_	_	-	_	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name]	HBGAT	TE[15:0]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

	Bit field		access is ignored, and read value of these bits is undefined. LK clock gate control BGATE[n] Description 0 HBCLKn clock gate. BGATE[n] Description 0 HBCLKn stops 1 HBCLKn does not stop (initial value) LK0: GDC (HOST IF) LK1: GDC (DRAW, GEO), MBUS2AXI (DRW) LK2: (Reserved) LK3: GDC (DISP0), MBUS2AXI (DISP) LK4: GDC (DISP1) LK5: GDC (CAP0), MBUS2AXI (CAP) LK6: GDC (CAP1) LK7: AXI, AHB2AXI, HBUS2AXI											
No.	Name		Description											
31-16	_	Unused bits. Write access is ign	ored, and read value of these bits is undefined.											
15-0	HBGATE[15:0]													
		HBGATE[n]	Description											
		0	HBCLKn stops											
		1	HBCLKn does not stop (initial value)											
		HBCLK1: GDC (E HBCLK2: (Reserv HBCLK3: GDC (E HBCLK4: GDC (E HBCLK5: GDC (C HBCLK6: GDC (C HBCLK6: AXI, AI	PRAW, GEO), MBUS2AXI (DRW) ed) DISP0), MBUS2AXI (DISP) DISP1) CAP0), MBUS2AXI (CAP) CAP1) HB2AXI, HBUS2AXI controller, DDR2 I/F ved) ved) ved) ved) ved)											

5.4.11. ARM core clock gate control register (CRAM)

This register controls clock gate of ARM core.

Address		$\mathbf{FFFE}_{7000_{\mathbf{H}}} + 28_{\mathbf{H}}$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	_		_	-		_	_	-	-	-	-	_	1	1	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Reserved)					ARMBG ATE		(Reserved))	ARMAG ATE
R/W	R1	R1	R1	R1	R1	R1	R1	R1	R1	R1	R1	R/W	R1	R1	R1	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1

Bit field		Description								
No.	Name	Description								
31-16	_	Unused bits. The write access is ignored, and read value of these bits is undefined.								
15-5	(Reserved)	Reserved bits. Vrite access is ignored, and read value of these bits is always "1".								
4	ARMBGATE	ARMBCLK clock gate control This bit controls ARMBCLK clock gate. 0 ARMBCLK stops 1 ARMBCLK does not stop (initial value) This clock is used to ATCLK of ETM9CS Single.								
3-1	(Reserved)	Reserved bits. Write access is ignored, and read value of these bits is always "1".								
0	ARMAGATE	ARMACLK clock gate control This bit controls ARMACLK clock gate. 0 ARMACLK stops 1 ARMACLK does not stop (initial value) After stopping this clock, proceed system reset to resume operation.								

5.5. Operation

This section descries CRG operation.

5.5.1. Generation of reset

Factor

There are following five reset factors.

1. External reset (XRST pin input)

The entire chip is initialized by the reset input from external pin, XRST. When external pin, PLLBYPASS is set to "L", external reset shifts to PLL oscillation stabilization waiting state.

2. Software reset (reset with register control)

Software reset occurs with writing "1" to SWRSTREQ bit of the Reset/Standby control register (CRSR). It does not change state to PLL oscillation stabilization even though PLLBYPASS bit of the PLL control register (CRPR) is "0" (setting that uses PLL clock.)

Moreover, this reset does not change the CRG module register, the VINITHI control register of remap/boot controller (RBC), and the INITRAM control register.

Clock source of the software reset is time based timer's count value. It is cleared when software reset is asserted.

This software reset generates the internal signal, which does not reset as CRSTn.

3. XSRST (reset request from debugging tool)

This signal is reset request from debugging tool (e.g. MultiICE), and internal reset request is able to transmit to the tool through XSRST pin This module recognizes the reset signal to be the same reset request as external reset's.

4. XTRST (built-in ICE macro reset request from debugging tool)

This signal is built-in ICE macro reset request from debugging tool (e.g. MultiICE), and the reset signal is to request reset to built-in ICE macro in ARM9. Although the reset signal is asserted, other peripherals are not initialized. ETM9CS Single is also reset by this signal.

5. Watchdog reset

When WDTSET/WDTCLR bits of the watchdog timer control register (CRWR) are set to "1" after external reset, watchdog timer starts. Writing "1" to the WDTSET/WDTCLR bits at the second time or later clears the timer.

Clock source of the watchdog timer is count value of the time based timer.

Clear operation of time based timer affects on watchdog timer's count value.

When the timer is cleared, the watchdog timer is also cleared.

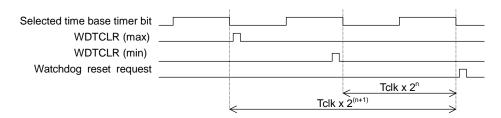


Figure 5-2 Timing of watchdog reset

As shown in Figure 5-2, watchdog reset occurs after second falling edge of selected time based timer bit.

During PLL oscillation stabilization waiting time and ARM9 debug mode (DBGACK = 1), CRG clears watchdog timer. Moreover, it monitors standby mode of ARM9 and clears watchdog timer automatically in the standby mode (standby mode = 1.)

Reset output signal

Reset signal output from the reset generator based on the reset factor is as follows.

HRESETn (AHB/APB bus reset)

This internal reset signal initializes ARM9 and AHB/APB peripherals, and it is output by external reset, software reset or XSRST reset.

XSRST (reset monitoring)

This signal reports to external circuit of ARM's internal reset source, moreover it is asserted the same as HRESETn signal.

Internal XTRST (built-in ICE macro reset)

This signal initializes built-in macro of ARM9. The macro must be reset at power-on so that this signal is output by external reset or external XTRST reset.

CRSTn (internal reset)

This signal is output by external reset or XSRST reset.

Table 5-3 shows correlation between reset factor and reset output signal.

Reset output	Reset factor									
Keset output	External reset	Software reset	Input XSRST	XTRST	Watchdog reset					
HRESETn	Asserted	Asserted	Asserted	Not asserted	Asserted					
Output XSRST	Asserted	Asserted	Not asserted	Not asserted	Asserted					
Internal XTRST	Asserted	Not asserted	Not asserted	Asserted	Not asserted					
CRSTn	Asserted	Not asserted	Asserted	Not asserted	Asserted					

 Table 5-3
 Correlation between reset factor and reset output signal

本页已使用福昕阅读器进行编辑。 福昕软件(C)2005-2009 版权所有, 仅供试用。 FUIITSU

5.5.2. Clock generation

Figure 5-3 shows clock generation chart.

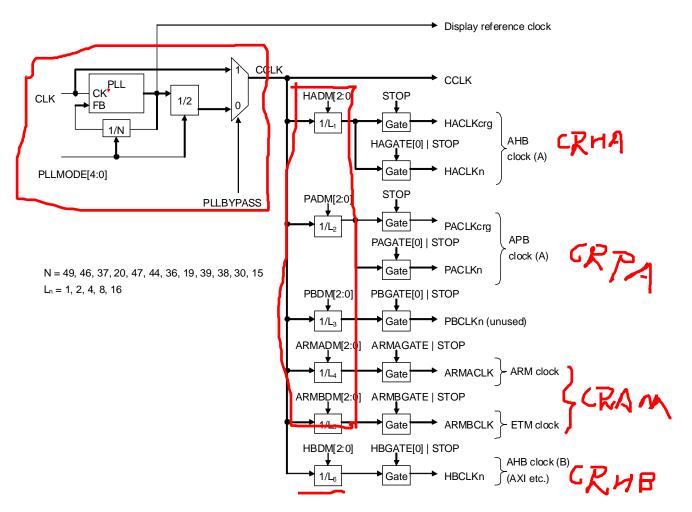


Figure 5-3 Clock generation chart

PLL control

Oscillation stabilization waiting

The clock transmission source in oscillation stabilization waiting is count value of the time based timer. Clear operation of time based timer affects on its count value.

When this module state is changed to PLL oscillation stabilization waiting state as shown below, the time based timer is cleared.

(1) External reset is asserted ("M" in Figure 5-4 and "m" of LUWMODE in the 5.4.2 PLL control register (CRPR))

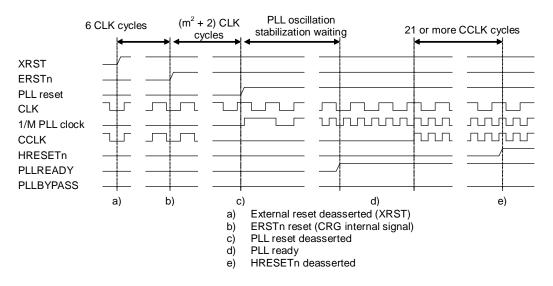


Figure 5-4 PLL oscillation stabilization waiting state after external reset

(2) PLL oscillation frequency is changed by PLL mode ("M" in Figure 5-5 and "m" of LUWMODE in the 5.4.2 PLL control register (CRPR))

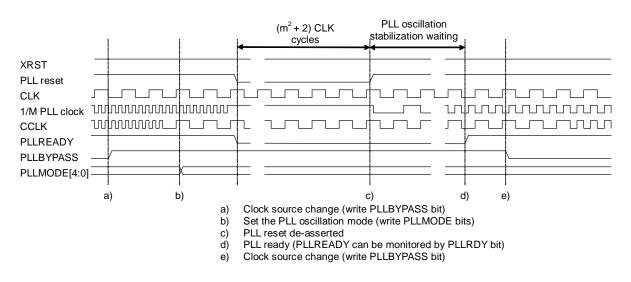


Figure 5-5 PLL oscillation stabilization waiting state by PLL mode change

(3) Returning from stop mode by external interrupt (see Figure 5-9)

(4) Watchdog reset is asserted

Frequency change

Oscillation frequency and frequency dividing ratio (M) of PLL ($f_{CLK} \times N$) are set by PLLMODE[4:0] bit of the PLL control register (CRPR), and the frequency is able to be changed during the operation (see Table 5-4.)

Do not change PLLMODE[4:0] when PLLBYPASS bit of the PLL control register (CRPR) is 0. Initial value at start up is determined by external pin, PLLBYPASS and CRIPM[3:0]. To specify PLLSTOP with the initial value, fix external pin, PLLBYPASS to "1" as well.

 Table 5-4
 Setting example of input frequency and multiple number

Operation frequency	Initial setting: {PLLBYPASS, CRIPM[3:0]} At operation: PLLMODE[4:0]					Multinla	Input frequency	PLL output /Display		ARMACLK	ARMBCLK	HACLKn	HBCLKn	PACLKn
	4	3	2	1	0	number	CLK	reference clock	OOLIN				HOCENT	
333M	0	0	0	0	0	49	13.5MHz	661.5MHz	330.8MHz	330.8MHz	165.4MHz	82.7MHz	165.4MHz	41.3MHz
	0	0	0	0	1	46	14.3MHz	658.7MHz	329.4MHz	329.4MHz	164.7MHz	82.3MHz	164.7MHz	41.2MHz
	0	0	0	1	0	37	17.7MHz	656.0MHz	328.0MHz	328.0MHz	164.0MHz	82.0MHz	164.0MHz	41.0MHz
	0	0	0	1	1	20	33.3MHz	666.6MHz	333.3MHz	333.3MHz	166.7MHz	83.3MHz	166.7MHz	41.7MHz
320M	0	0	1	0	0	47	13.5MHz	634.5MHz	317.3MHz	317.3MHz	158.6MHz	79.3MHz	158.6MHz	39.7MHz
	0	0	1	0	1	44	14.3MHz	630.1MHz	315.0MHz	315.0MHz	157.5MHz	78.8MHz	157.5MHz	39.4MHz
	0	0	1	1	0	36	17.7MHz	638.3MHz	319.1MHz	319.1MHz	159.6MHz	79.8MHz	159.6MHz	39.9MHz
	0	0	1	1	1	19	33.3MHz	633.3MHz	316.6MHz	316.6MHz	158.3MHz	79.2MHz	158.3MHz	39.6MHz
266M	0	1	0	0	0	39	13.5MHz	526.5MHz	263.3MHz	263.3MHz	131.6MHz	65.8MHz	131.6MHz	32.9MHz
	0	0	0	1	0	37	14.3MHz	529.8MHz	264.9MHz	264.9MHz	132.5MHz	66.2MHz	132.5MHz	33.1MHz
	0	1	0	1	0	30	17.7MHz	531.9MHz	266.0MHz	266.0MHz	133.0MHz	66.5MHz	133.0MHz	33.2MHz
	0	1	0	1	1	15	33.3MHz	500.0MHz	250.0MHz	250.0MHz	125.0MHz	62.5MHz	125.0MHz	31.2MHz
	1	1	1	1	1	PLL	STOP							

PLLBYPASS

Main clock (CCLK) of this module is able to be switched dynamically between PLL clock and external input clock (CLK) by PLLBYPASS bit of the PLL control register (CRPR.)

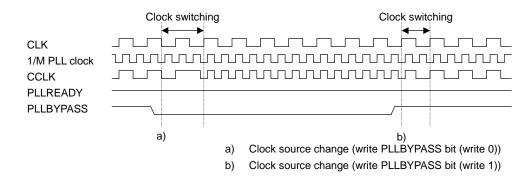


Figure 5-6 Clock switch between PLL clock and external clock

Clock gear

CRG corresponds to the clock gear function with clock enable signal.

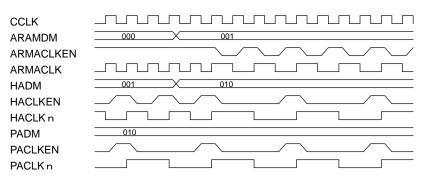
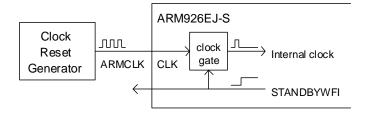


Figure 5-7 Clock gear


Standby mode (standby and stop)

ARM9 and CRG correspond to following two standby modes.

(1) Standby mode

ARM926EJ-S core corresponds to standby mode that is called "Wait for interrupt mode" with CP15. The STANDBYWFI signal is asserted and internal clock gate is closed not to supply input clock to sub module during the standby mode (refer to ARM926EJ-S Technical Reference Manual, "12.1.1 Dynamic power management (wait for interrupt mode)".)

This CRG does not equip function to stop ARMCLK in the standby mode.

Figure 5-8 STANDBYWFI mode (ARM926EJ-S)

(2) STOP mode

When STANDBYWFI (ARM926EJ-S) signal is set to "1" with STOPEN = 1, the state changes to STOP mode through standby mode (at STOPEN = 1, this module's STANDBYWFI signal is "1".)

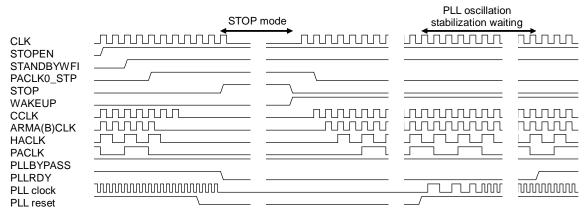

In this mode, CRG stops all clocks and PLL oscillation; moreover, the stop mode is released with external rest or external interrupt.

Figure 5-9 shows STOP mode operation.

Note:

When state is changed to the stop mode, "1" should be written to PLLBYPASS bit of the PLL control register (CRPR.)

Although PLL proceeds oscillation stabilization waiting at STOP mode release, clock is not switched to PLL clock until PLLBYPASS bit becomes "0"; in addition, PLL oscillation stabilization waiting state is skipped when PLLMODE[4:0] is 5'b11111.

* STOP = CLK clock is able to stop while the value is "1"

Figure 5-9 Stop mode

6. Remap boot controller (RBC)

This chapter describes function and operation of remap boot controller (RBC.)

6.1. Outline

RBC is APB slave module. It provides system boot operation control and controls remap sequence of the system, VINITHI signal of ARM926EJ-STM, and INITRAM signal that enable exception vector address change and ITCM reboot after power-on reset.

6.2. Feature

RBC has following features:

- Remap control register
- INITRAM signal control register
- VINITHI signal control register

6.3. Block diagram

Figure 6-1 shows RBC block diagram.

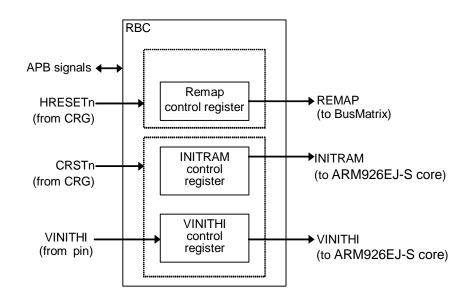


Figure 6-1 RBC block diagram

Table 6-1 shows RBC's external port function.

Table 6-1	RBC external	port function list
I ubic 0 I	IND C CAUCI nui	por crunction mot

Signal name	I/O	Description
VINITHI	Ι	Default value of output port, VINITHI

6.4. Supply clock

APB clock is supplied to RBC. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

6.5. Register

This section describes RBC register.

6.5.1. Register list

RBC is controlled by the register shown in Table 6-2.

Table 6-2RBC register list

Addres	S	Register name	Abbreviation	Description			
Base	Offset	Kegister näme	Abbreviation	Description			
$FFFE_{6000_{H}}$	$+00_{\rm H}$	(Reserved)	-	Reserved area (access prohibited)			
	$+04_{\rm H}$	Remap control register	RBREMAP	Remap state control			
	$+08_{\rm H}$	VINITHI control register A	RBVIHA	VINITHI output signal control			
	$+ 0C_{H}$	INITRAM control register A	RBITRA	INITRAM output signal control			
	+ 10 _H - + FFF _H	(Reserved)	-	Reserved area (access prohibited)			

Description format of register

Following format is used for description of register's each bit in "6.5.2 Remap control register (RBREMAP)" to "6.5.4 INITRAM control register A (RBITRA)".

Address							Bas	e addre	ess + O	ffset						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

6.5.2. Remap control register (RBREMAP)

Remap control register (RBREMAP) controls remap state. Once remap is carried out, its state kept until reset. Write operation to this register is valid only the first time after reset, and its second time or later is ignored.

This register is reset by HRESETn input.

This register should be accessed in word unit.

Address	GPR0: $FFFE_6000_H + 04_H$															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							(1	Reserve	d)							REM
Inallie							(1	cesei ve	u)							AP
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-1	(Reserved)	Reserved bit.
0		Remap state is controlled. When write operation to remap register is performed (both "0" and "1" of write data are available) REMAP output signal becomes high. BusMatrix is designed to remap memory map with REMAP output signal. REMAP = Low: Vector area is allocated to internal boot ROM REMAP = High: Vector area is allocated to internal SRAM_0

6.5.3. VINITHI control register A (RBVIHA)

VINITHI control register A (RBVIHA) controls VINITHI output signal. This register is reset by the CRSTn input, and its initial value is determined by input level of external pin, VINITHI. This register should be accessed in word unit.

Address							GPR0	: FFFE	_6000 _F	$_{\rm H} + 08_{\rm H}$						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	rved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value		Determined by input level of external pin, VINITHI														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							(F	Reserve	d)							VIHA
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Initial value					Dete	ermined	by inp	ut level	of exte	ernal pi	n, VIN	ITHI				

	Bit field	Description					
No.	Name	Description					
31-1	(Reserved bits. Write access is ignored. Reading these bits enable reading the value set by VINITHI.					
0	VIHA	VINTHI output signal is controlled.					

6.5.4. INITRAM control register A (RBITRA)

INITRAM control register A (RBITRA) controls INITRAM output signal. This register is reset by the CRSTn input. It should be accessed in word unit.

Address							GPR0:	FFFE	_6000 _H	$I + 0C_{H}$						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							(F	Reserve	d)							ITRA
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-1	(Reserved)	Reserved bits. Write access is ignored. Read value of these bits is always "0".
0	ITRA	INTRAM output signal is controlled.

6.6. Operation

This section describes RBC operation.

6.6.1. RBC reset

RBC has two reset input ports.

RBREMAP register is reset by HRESETn input, and RBVIHA and RBITRA registers are reset by CRSTn value.

Table 6-3 shows correlation between these reset and register.

		8
Reset input	Register	Description
HRESETn	RBREMAP	This port is reset by HRESETn.
CRSTn	RBVIHA	This port value reflects to value of external pin, VINITHI by CRSTn input.
	RBITRA	This port is reset by CRSTn input.

 Table 6-3
 Correlation between reset and register

6.6.2. Remap control

Remap changes vector area $(0000000_{\text{H}} - 00008000_{\text{H}})$ after power-on.

Vector area is allocated to built-in boot ROM at power-on and the system starts up from it.

With the remap control, the allocated area is changed to built-in SRAM_0; then vector table is able to be overwritten.

6.6.3. VINITHI control

ARM926EJ-S has VINITHI signal which determines exception vector address.

When it is low at reset, the exception vector is located in 00000000_{H} . On the other hand, when the signal is high at reset, the exception vector is located in FFFF0000_H.

Refer to "Technical reference manual" of individual ARM9 provided by ARM Ltd. for detail of VINITHI signal.

The initial value of RBVIHA register is defined by external pin, VINITHI.

6.6.4. INITRAM control

ARM926EJ-S has INITRAM signal. When it is high at reset, instruction TCM automatically becomes valid which enables reboot operation from ITCM.

Refer to "Technical reference manual" of individual ARM9 core provided by ARM Ltd. for detail of INITRAM signal.

RBITRA register is initialized to "0" by CRSTn, however it is not reset by HRESETn. This means, reboot operation from ITCM is able to be proceeded at software reset when exception vector table is copied to ITCM before software reset

7. Interrupt controller (IRC)

This chapter describes function and operation of interrupt controller (IRC.)

7.1. Outline

IRC consists of two channels, IRC0 and IRC1 which determine priority of IRQ source up to 32 factors respectively, and report to ARM core the highest priority IRQ source as IRQ interrupts. Therefore, those channels have priority setting register of IRQ factor and level setting register for the interrupt from ARM core.

Note:

The IRQ interrupt determined by IRC1 is accepted as IRQ6 interrupt factor of IRC0. Therefore, priority of all IRQ sources allocated to IRC1 is determined according to IRC1 and IRC0's IRQ6 settings.

The IRQ vector defined in ARM926EJ-S is only " 0×18 ", but the vector table factor is extended to 32 by IRC. When IRQ interrupt is asserted to the ARM core, interrupt vector table address corresponding to the IRQ interrupt factor is generated and displayed during the register.

IRQ interrupt handler must refer to the vector table extended further than "0×18".

IRC, connected to APB bus has delay interrupt control circuit and interrupt wake-up circuit from stop/standby mode which is composed of clock control circuit.

7.2. Feature

IRC has following features:

- 2 channels of IRC to correspond up to 32 factors of interrupt request
- Determination of IRQ interrupt priority to transfer to ARM926EJ-S
- Enable/Mask of extension IRQ interrupt
- Extension IRQ vector address display
- Supply of returning signal from stop mode to CRG (clock/reset generator)
- Capability of issuing software interrupt (IRC0_IRQ30/IRC0_FIQ) by register access

7.3. Block diagram

Figure 7-1 shows IRC block diagram and detail of interrupt request signal connection.

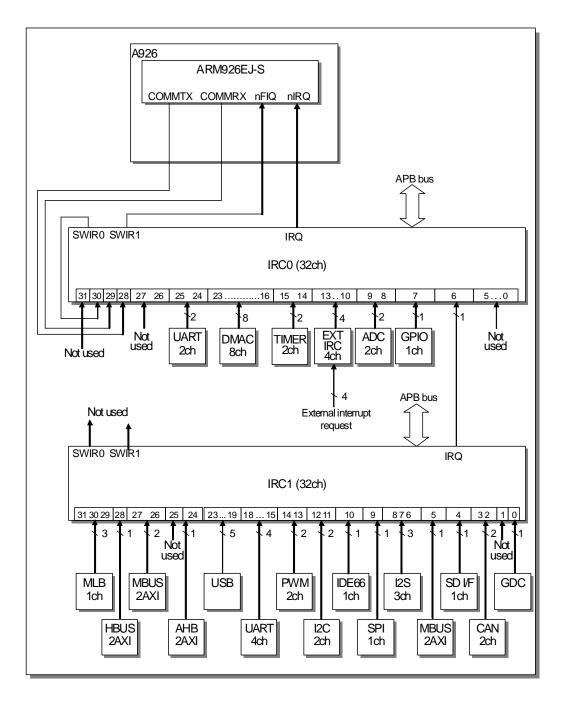


Figure 7-1 Block diagram of IRC

7.4. Supply clock

APB clock is supplied to IRC. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

7.5. Interrupt map

This section describes interrupt map.

7.5.1. Exception vector to ARM926EJ-S core

Table 7-1 shows exception vector defined in the ARM926EJ-S core.

Each interrupt factor input to IRC is notified as final interrupt of either IRQ ($0000_0018_{H/}$ FFFF_0018_H) or FIQ ($0000_001C_{H/}$ FFFF_001C_H) to the core.

Exception factor	Mode	Vector address At low vector/high vector
Reset	SVC	$0000_{-}0000_{H}/FFFF_{-}0000_{H}$
Undefined instruction	UND	$0000_{-}0004_{\rm H}/{\rm FFFF}_{-}0004_{\rm H}$
Software interrupt	SVC	$0000_{0008_{\rm H}}/{\rm FFFF}_{0008_{\rm H}}$
Prefetch abort (memory fault at instruction fetch)	Abort	0000_000C _H /FFFF_000C _H
Data abort (memory fault at data access)	Abort	0000_0010 _H /FFFF_0010 _H
Reserved	-	$0000_{0014_{\rm H}}/{\rm FFFF}_{0014_{\rm H}}$
IRQ (normal) interrupt	IRQ	0000_0018 _H /FFFF_0018 _H
FIQ (high speed) interrupt	FIQ	0000_001C _H /FFFF_001C _H

Table 7-1 Exception vector defined by ARM926EJ-S

7.5.2. Extension IRQ interrupt vector of IRC0/IRC1IRC0/IRC1

Table 7-2 and Table 7-3 show IRQ interrupt vector extended by IRC0/IRC1. Base address of the extension vector table is determined with IRC's TBR register.

	IRQ in	terrupt No.	Interrupt control	Correction	TBR address + correction
Exception factor	Decimal notation	Hexadecimal notation	register (level setting)	value	value (at TBR=0000_0000 _H)
IRQ0 (Unused)	0	$00_{\rm H}$	ICR00	20 _H	$0000_{-}0020_{H}$
IRQ5 (Unused)	5	05 _H	ICR05	34 _H	0000_0034 _H
IRQ6 (IRC1 interrupt)	6	06 _H	ICR06	38 _H	$0000_{-}0038_{\rm H}$
IRQ7 (GPIO interrupt)	7	07 _H	ICR07	$3C_{\rm H}$	$0000_{-}003C_{H}$
IRQ8 (ADC ch0 interrupt)	8	08 _H	ICR08	40 _H	0000_0040 _H
IRQ9 (ADC ch1 interrupt)	9	09 _H	ICR09	$44_{\rm H}$	$0000_{-}0044_{\mathrm{H}}$
IRQ10 (External interrupt 0)	10	0A _H	ICR10	48 _H	$0000_{-}0048_{\mathrm{H}}$
IRQ11 (External interrupt 1)	11	$0B_{H}$	ICR11	$4C_{H}$	0000_004C _H
IRQ12 (External interrupt 2)	12	0C _H	ICR12	50 _H	0000_0050 _H
IRQ13 (External interrupt 3)	13	$0D_{H}$	ICR13	54 _H	$0000_{-}0054_{\rm H}$
IRQ14 (Timer ch0 interrupt)	14	0E _H	ICR14	58 _H	$0000_{-}0058_{\rm H}$
IRQ15 (Timer ch1 interrupt)	15	0F _H	ICR15	5C _H	0000_005C _H
IRQ16 (DMAC ch0 interrupt)	16	10 _H	ICR16	60 _H	0000_0060 _H
IRQ17 (DMAC ch1 interrupt)	17	11 _H	ICR17	64 _H	0000_0064 _H
IRQ18 (DMAC ch2 interrupt)	18	12 _H	ICR18	68 _H	0000_0068 _H
IRQ19 (DMAC ch3 interrupt)	19	13 _H	ICR19	6C _H	0000_006C _H
IRQ20 (DMAC ch4 interrupt)	20	14 _H	ICR20	70 _H	0000_0070 _H
IRQ21 (DMAC ch5 interrupt)	21	15 _H	ICR21	74 _H	$0000_{-}0074_{\rm H}$
IRQ22 (DMAC ch6 interrupt)	22	16 _H	ICR22	78 _H	0000_0078 _H
IRQ23 (DMAC ch7 interrupt)	23	17 _H	ICR23	7C _H	0000_007C _H
IRQ24 (UART ch0 interrupt)	24	18 _H	ICR24	80 _H	0000_0080 _H
IRQ25 (UART ch1 interrupt)	25	19 _H	ICR25	84 _H	$0000_{-}0084_{\mathrm{H}}$
IRQ26 (Unused)	26	1A _H	ICR26	88 _H	$0000_{-}0088_{\mathrm{H}}$
IRQ27 (Unused)	27	$1B_{H}$	ICR27	8C _H	0000_008C _H
IRQ28 (COMMRX interrupt)	28	1C _H	ICR28	90 _H	0000_0090 _H
IRQ29 (COMMTX interrupt)	29	1D _H	ICR29	94 _H	0000_0094 _H
IRQ30 (Delay interrupt 0)	30	1E _H	ICR30	98 _H	0000_0098 _H
IRQ31 (Unused)	31	$1F_{H}$	ICR31	9C _H	0000_009C _H

 Table 7-2
 Expansion IRQ interrupt vector of IRC0

	· •	terrupt No.	Interrupt	Correction	TBR address + correction value (at TBR=0000_0100 _H)		
Exception factor	Decimal notation	Hexadecimal notation	control register (level setting)	value			
IRQ0 (GDC interrupt)	0	$00_{\rm H}$	ICR00	20 _H	0000_0120 _H		
IRQ1 (Unused)	1	$01_{\rm H}$	ICR01	24 _H	$0000_0124_{\rm H}$		
IRQ2 (CAN ch0 interrupt)	2	$02_{\rm H}$	ICR02	28 _H	$0000_0128_{\rm H}$		
IRQ3 (CAN ch1 interrupt)	3	03 _H	ICR03	$2C_{\rm H}$	0000_012C_H		
IRQ4 (SD I/F interrupt)	4	04 _H	ICR04	30 _H	0000_0130 _H		
IRQ5 (MBUS2AXI (Cap) interrupt)	5	$05_{\rm H}$	ICR05	34 _H	0000_0134 _H		
IRQ6 (I2S ch0 interrupt)	6	06 _H	ICR06	38 _H	0000_0138 _H		
IRQ7 (I2S ch1 interrupt)	7	07 _H	ICR07	3C _H	0000_013C _H		
IRQ8 (I2S ch2 interrupt)	8	$08_{\rm H}$	ICR08	40 _H	0000_0140 _H		
IRQ9 (SPI interrupt)	9	09 _H	ICR09	$44_{\rm H}$	0000_0144 _H		
IRQ10 (IDE66 interrupt)	10	$0A_{H}$	ICR10	$48_{\rm H}$	0000_0148 _H		
IRQ11 (I2C ch0 interrupt)	11	$0B_{\rm H}$	ICR11	$4C_{\rm H}$	0000_014C _H		
IRQ12 (I2C ch1 interrupt)	12	0C _H	ICR12	50 _H	0000_0150 _H		
IRQ13 (PWM ch0 interrupt)	13	$0D_{\rm H}$	ICR13	54 _H	0000_0154 _H		
IRQ14 (PWM ch1 interrupt)	14	0E _H	ICR14	58 _H	0000_0158 _H		
IRQ15 (UART ch2 interrupt)	15	0F _H	ICR15	5C _H	0000_015C _H		
IRQ16 (UART ch3 interrupt)	16	10 _H	ICR16	60 _H	0000_0160 _H		
IRQ17 (UART ch4 interrupt)	17	11 _H	ICR17	64 _H	0000_0164 _H		
IRQ18 (UART ch5 interrupt)	18	12 _H	ICR18	68 _H	0000_0168 _H		
IRQ19 (USB 2.0 Host PHYCNT interrupt)	19	13 _H	ICR19	6C _H	0000_016C _H		
IRQ20 (USB 2.0 EHCI Host interrupt)	20	14 _H	ICR20	70 _H	0000_0170 _H		
IRQ21 (USB 1.1 OHCI Host interrupt)	21	15 _H	ICR21	74 _H	$0000_0174_{ m H}$		
IRQ22 (USB 2.0 Function interrupt)	22	16 _H	ICR22	78 _H	$0000_0178_{ m H}$		
IRQ23(USB 2.0 Function DMAC interrupt)	23	17 _H	ICR23	7C _H	0000_017C _H		
IRQ24 (AHB2_AXI (AHBBUS) interrupt)	24	18 _H	ICR24	80 _H	0000_0180 _H		
IRQ25 (Unused)	25	19 _H	ICR25	84 _H	$0000_0184_{ m H}$		
IRQ26 (MBUS2AXI (Disp) interrupt)	26	1A _H	ICR26	88 _H	$0000_0188_{\rm H}$		
IRQ27 (MBUS2AXI (Draw) interrupt)	27	$1B_{\rm H}$	ICR27	8C _H	0000_018C _H		
IRQ28 (HBUS2AXI interrupt)	28	1C _H	ICR28	90 _H	0000_0190 _H		
IRQ29 (MLB_CINT interrupt)	29	1D _H	ICR29	94 _H	0000_0194 _H		
IRQ30 (MLB_SINT interrupt)	30	1E _H	ICR30	98 _H	0000_0198 _H		
IRQ31 (MLB_DINT interrupt)	31	$1F_{H}$	ICR31	9C _H	0000_019C _H		

FUĴĨTSU

7.6. Register

This section describes IRC register.

7.6.1. Register list

Table 7-4 shows IRC0 register list and Table 7-5 shows IRC1 register list.

Table 7-4IRC0 register list

Address	s	Desister nome	Abbroviation	Description					
Base	Offset	Register name	Abbreviation	Description					
FFFF_FE00 _H	$+00_{\rm H}$	IRQ flag register	IR0IRQF	IRQ interrupt flag control					
or FFFE_8000 _H	+ 04 _H	IRQ mask register	IR0IRQM	IRQ interrupt asserted mask control					
FFFE_8000 _H	+ 08 _H	Interrupt level mask register	IR0ILM	Valid interrupt level setting from ARM core					
-	$+ 0C_{H}$	ICR monitoring register	IR0ICRMN	Current IRQ interrupt source's interrupt level display					
	+ 10 _H	(Reserved)		Reserved (access prohibited)					
	+ 14 _H	Delay interrupt register 0	IR0DICR0	Delay interrupt control for task switch					
	+ 18 _H	Delay interrupt register 1	IR0DICR1	Delay interrupt control					
	+ 1C _H	Table base register	IR0TBR	High order address (24 bit) setting of IRQ vector					
	$+20_{\rm H}$	Interrupt vector register	IR0VCT	Interrupt vector table display					
	+ 24 _H	(Reserved)		Reserved (access prohibited)					
	+ 28 _H	(Reserved)	—	Reserved (access prohibited)					
	+ 2C _H	(Reserved)	_	Reserved (access prohibited)					
-	+ 30 _H	Interrupt control register 0	IR0ICR00	IRQ0 interrupt level setting (unused and access prohibited)					
-	+ 34 _H	Interrupt control register 1	IR0ICR01	IRQ1 interrupt level setting (unused and access prohibited)					
	+ 38 _H	Interrupt control register 2	IR0ICR02	IRQ2 interrupt level setting (unused and access prohibited)					
	+ 3C _H	Interrupt control register 3	IR0ICR03	IRQ3 interrupt level setting (unused and access prohibited)					
-	$+40_{\rm H}$	Interrupt control register 4	IR0ICR04	IRQ4 interrupt level setting (unused and access prohibited)					
-	+ 44 _H	Interrupt control register 5	IR0ICR05	IRQ5 interrupt level setting (unused and access prohibited)					
	+ 48 _H	Interrupt control register 6	IR0ICR06	IRQ6 interrupt level setting (IRC1 interrupt)					
-	+ 4C _H	Interrupt control register 7	IR0ICR07	IRQ7 interrupt level setting (GPIO interrupt)					
	+ 50 _H	Interrupt control register 8	IR0ICR08	IRQ8 interrupt level setting (ADC ch0 interrupt)					
-	+ 54 _H	Interrupt control register 9	IR0ICR09	IRQ9 interrupt level setting (ADC ch1 interrupt)					
	+ 58 _H	Interrupt control register 10	IR0ICR10	IRQ10 interrupt is set (external interrupt 0)					
	+ 5C _H	Interrupt control register 11	IR0ICR11	IRQ11 interrupt level setting (external interrupt 1)					
	$+ 60_{\rm H}$	Interrupt control register 12	IR0ICR12	IRQ12 interrupt level setting (external interrupt 2)					
-	+ 64 _H	Interrupt control register 13	IR0ICR13	IRQ13 interrupt level setting (external interrupt 3)					
-	+ 68 _H	Interrupt control register 14	IR0ICR14	IRQ14 interrupt level setting (timer ch0 interrupt)					
	+ 6C _H	Interrupt control register 15	IR0ICR15	IRQ15 interrupt level setting (timer ch1 interrupt)					
-	+ 70 _H	Interrupt control register 16	IR0ICR16	IRQ16 interrupt level setting (DMAC ch0 interrupt)					
-	+ 74 _H	Interrupt control register 17	IR0ICR17	IRQ17 interrupt level setting (DMAC ch1 interrupt)					
	+ 78 _H	Interrupt control register 18		IRQ18 interrupt level setting (DMAC ch2 interrupt)					
-	+ 7C _H	Interrupt control register 19	IR0ICR19	IRQ19 interrupt level setting (DMAC ch3 interrupt)					
-	$+ 80_{\rm H}$	Interrupt control register 20	IR0ICR20	IRQ20 interrupt level setting (DMAC ch4 interrupt)					
-	+ 84 _H	Interrupt control register 21	IR0ICR21	IRQ21 interrupt level setting (DMAC ch5 interrupt)					
-	+ 88 _H	Interrupt control register 22	IR0ICR22	IRQ22 interrupt level setting (DMAC ch6 interrupt)					
-	+ 8C _H	Interrupt control register 23	IR0ICR23	IRQ23 interrupt level setting (DMAC ch7 interrupt)					
	+ 90 _H	Interrupt control register 24	IR0ICR24	IRQ24 interrupt level setting (UART ch0 interrupt)					
	+ 94 _H	Interrupt control register 25	IR0ICR25	IRQ25 interrupt level setting (UART ch0 interrupt)					
	+ 98 _H	Interrupt control register 26		IRQ26 interrupt level setting (unused and access prohibited					
-	+ 9C _H	Interrupt control register 27	IR0ICR27	IRQ27 interrupt level setting (unused and access prohibited					
F	$+ A0_{\rm H}$	Interrupt control register 28		IRQ28 interrupt level setting (COMMRX interrupt)					
	$+A4_{H}$	Interrupt control register 29		IRQ29 interrupt level setting (COMMTX interrupt)					
	$+A8_{H}$	Interrupt control register 30		IRQ30 interrupt level setting (delay interrupt)					
H	$+ AC_{H}$	Interrupt control register 31	IR0ICR31	IRQ31 interrupt level setting (unused and access prohibited					

Table 7-5IRC1 register list

Address	5	Register name	Abbreviation	Description
Base	Offset			
FFFB_0000 _H		IRQ flag register		IRQ interrupt flag control
-		IRQ mask register	IR1IRQM	IRQ interrupt asserted mask control
	+ 08 _H	Interrupt level mask register	IR1ILM	Valid interrupt level setting from ARM core
		ICR monitoring register	IR1ICRMN	Current IRQ interrupt source's interrupt level display
		(Reserved)	_	Reserved (access prohibited)
		(Reserved)	_	Reserved (access prohibited)
	+ 18 _H	(Reserved)	_	Reserved (access prohibited)
		Table base register	IR1TBR	IRQ vector's high order address (24 bit) setting
		Interrupt vector register	IR1VCT	Interrupt vector table display _o
	+ 24 _H	(Reserved)	-	Reserved (access prohibited)
		(Reserved)		Reserved (access prohibited)
		(Reserved)		Reserved (access prohibited)
	+ 30 _H	Interrupt control register 0		IRQ0 interrupt level setting (GDC interrupt)
		Interrupt control register 1	IR1ICR01	IRQ1 interrupt level setting (unused and access prohibited)
		Interrupt control register 2		IRQ2 interrupt level setting (CAN ch0 interrupt)
		Interrupt control register 3		IRQ3 interrupt level setting (CAN ch1 interrupt)
	$+40_{\rm H}$	Interrupt control register 4	IR1ICR04	IRQ4 interrupt level setting (SD I/F interrupt)
		Interrupt control register 5	IR1ICR05	IRQ5 interrupt level setting (MBUS2AXI (Cap) interrupt)
		Interrupt control register		IRQ6 interrupt level setting (I2S ch0 interrupt)
		Interrupt control register 7		IRQ7 interrupt level setting (I2S ch1 interrupt)
	+ 50 _H	Interrupt control register 8	IR1ICR08	IRQ8 interrupt level setting (I2S ch2 interrupt)
		Interrupt control register 9		IRQ9 interrupt level setting (SPI interrupt)
1 1		Interrupt control register 10		IRQ10 interrupt level setting (IDE66 interrupt)
	+ 5C _H	Interrupt control register 11	IR1ICR11	IRQ11 interrupt level setting (I ² C ch0 interrupt)
		Interrupt control register 12	IR1ICR12	IRQ12 interrupt level setting (I ² C ch1 interrupt)
		Interrupt control register 13		IRQ13 interrupt level setting (PWM ch0 interrupt)
		Interrupt control register 14		IRQ14 interrupt level setting (PWM ch1 interrupt)
	$+ 6C_{\rm H}$	Interrupt control register 15	IR1ICR15	IRQ15 interrupt level setting (UART ch2 interrupt)
		Interrupt control register 16		IRQ16 interrupt level setting (UART ch3 interrupt)
		Interrupt control register 17		IRQ17 interrupt level setting (UART ch4 interrupt)
		Interrupt control register 18		IRQ18 interrupt level setting (UART ch5 interrupt)
	+ 7C _H	Interrupt control register 19		IRQ19 interrupt level setting (USB 2.0 Host PHYCNT interrupt)
1 F	$+ 80_{\rm H}$	Interrupt control register 20	IR1ICR20	IRQ20 interrupt level setting (USB 2.0 EHCI Host interrupt)
1 H		Interrupt control register 21	IR1ICR21	IRQ21 interrupt level setting (USB 1.1 OHCI Host interrupt)
		Interrupt control register 22		IRQ22 interrupt level setting (USB 2.0 Function interrupt)
	+ 8C _H	Interrupt control register 23	IR1ICR23	IRQ23 interrupt level setting (USB 2.0 Function DMAC interrupt)
	+ 90 _H	Interrupt control register 24		IRQ24 interrupt level setting (AHB2_AXI (AHBBUS) interrupt)
	+ 94 _H	Interrupt control register 25	IR1ICR25	IRQ25 interrupt level setting (unused and access prohibited)
	+ 98 _H	Interrupt control register 26	IR1ICR26	IRQ26 interrupt level setting (MBUS2AXI (Disp) interrupt)
	+ 9C _H	Interrupt control register 27	IR1ICR27	IRQ27 interrupt level setting (MBUS2AXI (Draw) interrupt)
	$+ A0_{\rm H}$	Interrupt control register 28		IRQ28 interrupt level setting (HBUS2AXI interrupt)
		Interrupt control register 29		IRQ29 interrupt level setting (MLB_CINT interrupt)
	$+A8_{H}$	Interrupt control register 30	IR1ICR30	IRQ30 interrupt level setting (MLB_SINT interrupt)
		Interrupt control register 31		IRQ31 interrupt level setting (MLB_DINT interrupt)

Description format of register

Following format is used for description of register's each bit in "7.6.2 IRQ flag register (IR0IRQF/IR1IRQF)" to "7.6.10 Interrupt control register (IR0ICR31/IR1ICR31 – IR0ICR00/IR1ICR00)".

Address		Base address + Offset														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

7.6.2. IRQ flag register (IR0IRQF/ IR1IRQF)

IR0IRQF/IR1IRQF registers control IRQ interrupt flag.

When interrupt level is higher than the one set in IROILM/IR1ILM registers as a result of determining IRQ interrupt source level, IRQF bit is set and IRQ interrupt is asserted to ARM core.

The interruption to ARM core is negated with "0" writing to the IR0IRQF/IR1IRQF registers.

When IRQF bit is set, interrupt vector is displayed to IR0VCT/IR1VCT registers but its address value is not changed until IRQF bit is set.

Address	IRC0: FFFF	RC0: 'FFF_FE00 _H or FFFE_8000 _H + 00 _H							IRC1: FFFB_0000 _H + 00 _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-	-	_	-	-	-	_	_	-	-	_	-	-	-	-	_
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	_	-	-	-	_	_	-	-	_	-	-	-	-	IRQF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0

	Bit field	Description							
No.	Name	Description							
31-1	_	Unused bit. The write access is ignored. The read value of these bits is undefined.							
0	IRQF	IRQ interrupt flag. When interrupt level is higher than the one set in IR0ILM/IR1ILM registers (interrupt level in IR0ICR/IR1ICR registers > interrupt level in IR0ILM/IR1ILM registers), IRQF bit is set to "1" and IRQX (interrupt request) is asserted to ARM core.							
		0 IRQ is not asserted.							
		1 IRQ is asserted.							
		This bit is cleared by writing "0", and writing "1" is invalid.							

7.6.3. IRQ mask register (IR0IRQM/IR1IRQM)

Addross	IRC0: FFFF		or FF	FE_800)0 _H + 0	4 _H		IRC1: FFFB_0000 _H + 04 _H								
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		-	-	-	-	-	-	_	-	-	-	-	-	-	_	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	_	-	-	-	-	-	_	-	-	_	-	-	-	IRQM
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0

	Bit field	Description								
No.	Name	Description								
31-1	_	Unused bit. The write access is ignored. The read value of these bits is undefined.								
0	IRQM	Asserted IRQ interrupt is masked.								
		0 Asserted IRQ is masked								
		1 Asserted IRQ is valid								
		This bit is initialized to "0" by reset.								

7.6.4. Interrupt level mask register (IR0ILM/IR1ILM)

IROILM/IR1ILM registers set interrupt level enabled by the ARM core. When the IRQ interrupt source is larger than the setting value of this register, IRC notifies the ARM core of the IRQ interrupt.

"Interrupt level of IR0ICR/IR1ICR registers > Interrupt enable level of IR0ILM/IR1ILM registers" -> Generated IRQ interrupt

Address	IRC0: FFFF		or FF	FE_800	00 _H + 0	8 _H			IRC1: FFFB	_0000 _H	+ 08 _H					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	_	_	-	_	-	-	_	-	-	_	_	_	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	_	-	_	_	_	_	-	_	_	-	_	_	ILM3	ILM2	ILM1	ILM0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	1	1	1

	Bit field	Description
No.	Name	Description
31-4	_	Unused bit. The write access is ignored. The read value of these bits is undefined.
3-0	ILM3-0	These bits are used to set IRQ interrupt mask level. Its range is from 0000_B the highest to 1111_B the lowest. When 0000_B (highest level) is set, all interrupt requests are masked. These bits are initialized to 1111_B by reset.

7.6.5. ICR monitoring register (IR0ICRMN/IR1ICRMN)

IR0ICRMN/IR1ICRMN registers display interrupt level of the current IRQ interrupt source.

If IRQ interrupt source is less than the setting value of these registers, 1111_B is displayed, and for the case that IRQ interrupt transmission source is larger than the setting value, the highest interrupt source level is displayed.

These registers are updated with setting IRQF bit of IR0IRQF/IR1IRQF "1", and displayed interrupt level is not changed until IRQF bit is cleared.

After it is cleared, interrupt level is set again and the display is updated with the source set the IRQF bit. Register value is not defined if the bit is not set to "1".

Addroce	IRC0: FFFF		or FF	FE_800)0 _H + 0	C _H										
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	_	_	_	-	_	_	_	_	-	-	_	_	-	-	-	_
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	_	_	_	_	_	_	ICRMN3	ICRMN2	ICRMN1	ICRMN0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

	Bit field	Description
No.	Name	Description
31-4	_	Unused bit. The write access is ignored. The read value of these bits is undefined.
3-0		When IRQ interrupt source is larger than the setting value of IR0ILM/IR1ILM registers, the highest interrupt source level is displayed. The initial value of these bits is undefined.

7.6.6. Delay interrupt control register 0 (IR0DICR0)

IRODICR0 register controls delay interrupt for the task switch. Writing to this register enables software to issue/cancel IRQ interrupt request. The delay interrupt is allocated into IRQ30 of IRC0.

Address	IRC0: FFFF		or FF	FE_800)0 _H + 1	4 _H	IRC1: Reserved area FFFB_0000 _H + 14 _H									
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	_	_	-	-	-	-	_	-	_	-	_	_	_	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	DLYI0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0

	Bit field	Description
No.	Name	Description
31-1	_	Unused bit. The write access is ignored. The read value of these bits is undefined.
0	DLYI0	Delay interrupt is controlled. It is cancelled by writing "0" to this bit.
		0 Delay interrupt factor is cancelled and interrupt request does not occur. 1 Delay interrupt factor is generated and interrupt request occurs.
		This bit is initialized to "0" by reset.

7.6.7. Delay interrupt control register 1 (IR0DICR1)

Writing to IR0DICR1 register enables software to issue/cancel FIQ interrupt request. The delay interrupt is allocated into FIQ of the ARM.

Address	IRC0: FFFF		or FF	FE_80()0 _H + 1	8 _H	IRC1: Reserved area FFFB_0000 _H + 18 _H									
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-	-	-	_	_	_	-	_	-	-	-	-	_	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	-	_		1	-	1	-	-	-	-		-		DLYI1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0

	Bit field	Description
No.	Name	Description
31-1	_	Unused bit. The write access is ignored. The read value of these bits is undefined.
0	DLY11	Delay interrupt is controlled. It is cancelled by writing "0" to this bit.
		0 Delay interrupt factor is cancelled but interrupt request does not occur
		1 Delay interrupt factor is generated and interrupt request occurs
		This bit is initialized to "0" by reset.

7.6.8. Table base register (IR0TBR/IR1TBR)

IROTBR/IR1TBR registers indicate upper address (24 bit) of IRQ vector. When IRC receives IRQ interrupt source, and IRQ is asserted to the ARM core, the address displayed in IROVCT/IR1VCT registers are as follows.

(IR0TBR/IR1TBR setting value) + Individual IRQ interrupt source vector address

Address	IRC0: FFFF	_FE00 _H	or FF	FE_800	00 _H + 1	C _H	IRC1: _H FFFB_0000 _H + 1C _H									
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	TBR31	TBR30	TBR29	TBR28	TBR27	TBR26	TBR25	TBR24	TBR23	TBR22	TBR21	TBR20	TBR19	TBR18	TBR17	TBR16
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	TBR15	TBR14	TBR13	TBR12	TBR11	TBR10	TBR9	TBR8	Zero							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description								
No.	Name	Description								
31-8	TBR31-8	Set upper address (24 bit) of IRQ vector. These bits are initialized to "0" by reset.								
7-0	Zero	"0" fixed bit. Writing is invalid and "0" is always read in the read value. These bits are initialized to "0" by reset.								

7.6.9. Interrupt vector register (IR0VCT/IR1VCT)

IROVCT/IR1VCT registers display interrupt vector table to the interrupt source to be processed when IRQ is asserted to ARM core ("1" is set to IRQF bit of IR0IRQF/IR1IRQF registers.)

The priority of vector address is as follows.

- The highest interrupt source vector level in the generated IRQ interrupt source has higher priority
- When interrupt of same level and transmission source occurs at the same time, the one with less address offset value is prioritized

Address	IRC0: FFFF		I or FF	FE_80	00 _H + 2	0 _H	IRC1: _H FFFB_0000 _H + 20 _H									
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	VCT31	VCT30	VCT29	VCT28	VCT27	VCT26	VCT25	VCT24	VCT23	VCT22	VCT21	VCT20	VCT19	VCT18	VCT17	VCT16
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	VCT15	VCT14	VCT13	VCT12	VCT11	VCT10	VCT9	VCT8	VCT7	VCT6	VCT5	VCT4	VCT3	VCT2	VCT1	VCT0
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X

	Bit field	Description
No.	Name	Description
31-0	VCT31-0	Interrupt vector table is displayed to the interrupt source to be processed. The value adding each interrupt factor's offset value to upper address value set by IROTBR/IR1TBR registers is displayed as vector value. Refer to "Table 7-2 Expansion IRQ interrupt vector of IRC0" and "Table 7-3 Extension IRQ interrupt vector of IRC1" for correlation of interrupt source, interrupt level register, and vector address. The initial value of these bits is undefined.

After IRQF bit of IR0IRQF/IR1IRQF registers is set to "1", the displayed vector address value is not changed until the IRQF bit is cleared. When the bit is cleared, interrupt level is set again and the display is updated by the source that sets the IRQF bit. Register value is not defined if the bit is not set to "1".

Firmware branches into the address specified by VCT register (branched to extension vector table) with the instruction in IRQ vector (0000_0018_H). Then it branches into interrupt handler by the instruction on the address. If IRQF bit is cleared after the branch, asserting IRQ enables to observe whether new IRQ source is higher than the current one in the interrupt handler.

7.6.10. Interrupt control register (IR0ICR31/IR1ICR31 – IR0ICR00/IR1ICR00)

IR0ICR31/IR1ICR31 – IR0ICR00/IR1ICR00 registers are supplied to each IRQ interrupt source, and are able to set interrupt level to the corresponding IRQ interrupt source. When IRQ interrupt source is larger than the setting value of IR0ILM/IR1ILM registers (interrupt level of IR0ICRn/IR1ICRn registers <= interrupt level of IR0ILM/IR1ILM registers), it is masked.

Address		_ FE00 _H 		_	00 _H + 3 00 _H + A				IRC1: FFFB_0000 _H + 30 _H FFFB_0000 _H + AC _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	_	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	_	_	_	_	_	_	_	ICR3	ICR2	ICR1	ICR0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	1	1	1

	Bit field						Description							
No.	Name						Description							
31-4	_	-	Unused bit. The write access is ignored. The read value of these bits is undefined.											
3-0	ICR3-0		These bits are used to set interrupt level value of each interrupt source. Its range is from $'0000_B''$ the highest to "1111 _B " the lowest.											
			ICR3	ICR3	ICR1	ICR0	Interrupt level							
			0	0	0	0	Settable highest level							
			0	0	0	1	▲ (highest)							
			0	0	1	0								
			0	0	1	1								
			0	1	0	0								
			0	1	0	1								
			0	1	1	0								
			0	1	1	1								
			1	0	0	0								
			1	0	0	1								
			1	0	1	0								
			1	0	1	1								
			1	1	0	0								
			1	1	0	1								
			1	1	1	0	(lowest)							
			1	1	1	1	Uninterruptible							
		Th	nese bi	ts are i	nitializ	ed to "I	1111 _B " by reset.							

7.7. Operation

This section describes IRC operation.

7.7.1. Outline

Interrupt operation process is described with using IRQ24 interrupt as an example.

- 1. When IRQ interrupt is asserted to ARM core as a result of prioritization of IRQ24 interrupt source with interrupt controller, the ARM core refers instruction of vector address $0000_{-}0018_{H}$.
- 2. Loading instruction, LDR PC, [PC, $\#_0 \times 200$] is written to vector table address 0000_0018_H beforehand. Then extension interruption vector address of IRQ24 (VCT register value) is loaded into PC, and the ARM core refers IRQ24 vector address of extension interrupt vector table.
- 3. Branch instruction to the IRQ24 interrupt handler should be written to IRQ24 extension interrupt vector address. Then PC branches into the IRQ24 interrupt handler with the branch instruction. All interrupt handlers should be set within ±32MB of the extension interrupt vector table in order to use the branch instruction. If the handler is unable to be set in the range, use load instruction, **LDR PC**, **[PC**, **#_0x200]** instead.

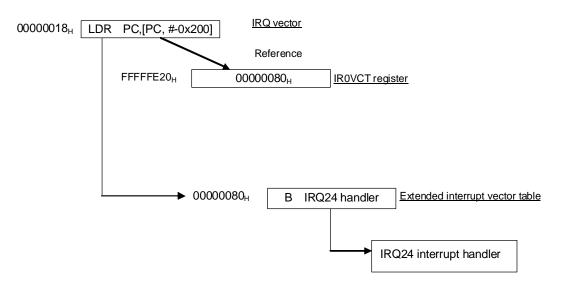


Figure 7-2 IRQ24 interrupt process example

7.7.2. Initialization

- 1. Determine individual exception table after power-on.
- 2. Set extension interrupt vector table.
- 3. Store load instruction, LDR PC, [PC, #_0x200] to IRQ vector (00000018_H) in the ARM core.
- 4. Set base address of the interrupt table to IR0TBR register.
- 5. Set interrupt level of each interrupt source to IR0ICR31 00 registers.
- 6. Set interrupt level that IRQ interrupt becomes valid to the IR0ILM register.
- 7. Set I flag of CPSRs register in the ARM core to "0" (to validate IRQ.)
- 8. Validate interrupt with IR0IRQM register in IRC.

7.7.3. Multiple interrupt process

Example of multiple interrupt process is shown below.

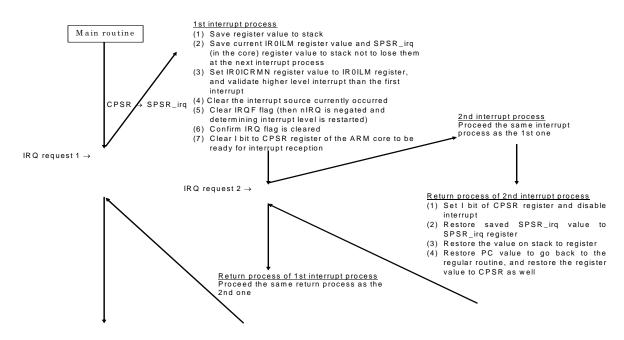


Figure 7-3 Example of multiple IRQ interrupt process

7.7.4. Example of IRQ interrupt handler

IRQ_Handler ROUT STMFD SP!, {R0-R12, R14} ;Save register value MESSAGE "Enter Dummy IRQ Handler" LDR R0, = IR0ILM LDR R1, [R0] MRS R2, SPSR STMFD SP!, {R1, R2} ;IR0ILM and SPSR_irq register values are saved LDR R2, = IR0ICRMN LDR R1, [R2] STR R1, [R0] ;IR0ICRMN register value is set to IR0ILM register

Routine to clear interrupt factor

MOV	R1, #0	
LDR	R0, = IR0IRQF	
STR	R1, [R0];	;Clear IRQF bit (bit 0) of IR0IRQF register
		;Start the next interrupt level setting operation.
LOOP		
LDR	R1,[R0]	;Check IRQF flag clear
CMP	R1,#0	
BNE LOOP		
;; Clear ARM	I IRQ Flag \rightarrow Enable Interrupt	
MRS	R2, CPSR	
BIC	R2, R2, #I_Bit	
MSR	CPSR_c, R2;	;Clear I bit of CPSR register (included in the core) and validate IRQ interrupt (enable)

If the IRQ interrupt higher than the current IRQ source occurs, move to the corresponding interrupt handler.

Main routine for this interrupt factor

MRS R2, CPS	R	
ORR R2, R2 #	t1_Bit	
MSR CPSR_c	;, R2;	;Set I bit of CPSR register (included in the core) and invalidate IRQ interrupt (disable)
LDR R0, = IR0ILM		
LDMFD SP!, {R1, R2}		
MSR SPSR_c	xsf, R2	
STR R1, [R0];		;Resume saved value in IR0ILM and SPSR_irq registers (included in the core)
LDMFD	SP! {R0-R12, R14};	;Resume register value
SUBS	PC, R14, #4;	;CPSR < - SPSR_irq, PC < - R14 –4

7.7.5. Resume from Stop and standby modes

Resume from stop and standby modes is able to be instructed to CRG (Clock Reset Controller) with issuing IRQ interrupt from macro.

The resume signal from stop and standby modes, asserted to ARM clock controller is generated by higher IRQ factor than the interrupt level set with IROILM register (see Figure 7-1.)

7.7.6. Notice for using IRC

Notice for using IRC is shown below.

Notice for IRQ clear timing

As described in "7.6.2 IRQ flag register (IR0IRQF/ IR1IRQF)", "0" writing to IRQF bit of IR0IRQF/IR1IRQF registers negates IRQX (interrupt request) to the ARM core; however, IRQX is negated during 1 cycle of APB clock after writing "0". Therefore, the ARM core may wrongly goes into IRQ mode again by the IRQX before clear operation if the code (interrupt handler) which may validate ARM core interrupt again is written after "0" writing to the IRQF.

This might occurs especially when ARM core's clock frequency is faster than the IRC frequency.

In order to prevent such problem, add dummy instruction which accesses to IRC interrupt register after clear instruction of IRQF. In this way, IRQX is cleared properly before interrupt of the ARM core becomes valid again.

8. External bus interface

This chapter describes external bus of MB86R01.

8.1. Outline

MB86R01 has external bus interface for accessing to external memory device such as SRAM and Flash.

8.2. Spec limitation

External bus interface supports 8 chip selects (CS0-7). However, only CS0, CS2, and CS4, which have external pin (MEM_XCS[0/2/4]) are able to be used. The others (CS1, CS3, CS5, CS6, CS7) are not usable since they do not have external pin.

While external bus interface is able to use CS0/2/4 chip selects, address area for other chip selects (CS1/3/5/6/7) are allocated in LSI during initialization (see Figure 8-1.)

0x1100_0000	CS1	
0x1000_0000		
0x0F00_0000		
0x0E00_0000		
0x0D00_0000		
0x0C00_0000		
0x0B00_0000		
0x0A00_0000		
0x0900_0000		
0x0800_0000		
0x0700_0000	CS7	
0x0600_0000	CS6	
0x0500_0000	CS5	
0x0400_0000		Reserved under initialing
0x0300_0000	CS3	
0x0200_0000		

CS1: 0x1100_0000-0x11FF_FFFF (16MB) CS3: 0x0300_0000-0x03FF_FFFF (16MB) CS5: 0x0500_0000-0x05FF_FFFF (16MB) CS6: 0x0600_0000-0x06FF_FFFF (16MB) CS7: 0x0700_0000-0x07FF_FFFF (16MB)

Figure 8-1 Initialization value of chip selection address area (except CS0/2/4) valid in LSI

If address area of CS0/2/4 and CS1/3/5/6/7 is overlapped, CS0/2/4 signals (MEM_XCS[0/2/4] pin output) may not be asserted correctly. Therefore, perform initial setting shown in the next page for using external bus interface.

Initial setting for using external bus interface

CS1/3/5/6/7 address areas should be set out of CS0/2/4 address areas with SRAM/Flash area register 1/3/5/6/7 (MCFAREA1/3/5/6/7.) (See Table 8-1.)

Set CS1/3/5/6/7 area out of CS0/2/4

address areas

Tuble 0 1 Obl/5/5/6/7 Bittini/Tubli area register 1/5/5/6/7 address and recommended setting value	Table 8-1	CS1/3/5/6/7 SRAM/Flash area register 1/3/5/6/7 address and recommended setting value
---	-----------	--

Chip select	SRAM/Flash	ı area register	Recommended setting value				
Chip select	Abbreviation	Address	(Note)				
CS1	MCFAREA1	0xFFFC0044	0x0000001F				
CS3	MCFAREA3	0xFFFC004C	0x0000001F				
CS5	MCFAREA5	0xFFFC0054	0x0000001F				
CS6	MCFAREA6	0xFFFC0058	0x0000001F				
CS7	MCFAREA7	0xFFFC005C	0x0000001F				

Note) Since CS1/3/5/6/7 are unable to be used, the same address area is settable.

0x11FF FFFF 0x11F0 0000	CS1, CS3, CS5, CS6, CS7
0x1100_0000	
0x1000_0000	
0x0F00_0000	
0x0E00_0000	
0x0D00_0000	
0x0C00_0000	
0x0B00_0000	
0x0A00_0000	
0x0900_0000	
0x0800_0000	
0x0700_0000	
0x0600_0000	
0x0500_0000	
0x0400_0000	
0x0300_0000	
0x0200_0000	

Figure 8-2 CS1/3/5/6/7 address areas

This initial setting enables CSO/2/4 address areas setting in $0x0200_0000 - 0x11EF_FFFF$. For $0x1000_0000 - 0x10FF_FFFF$ (external boot ROM), address area is fixed in CS4.

Remarks:

CS1/3/5/6/7 address areas are able to set other values than the one indicated in Table 8-1; in this case, make sure that address area of CS0/2/4 and CS1/3/5/6/7 addresses are not overlapped.

FUĴÎTSU

8.3. Feature

External bus interface of MB86R01 has the following features.

- Supporting 16/32 bit (32 bit is an option) width of SRAM/Flash
- 3 chip selects for SRAM/Flash (MEM_XCS[4] is for boot operation).
- Parameter setting by individual chip select for SRAM/Flash
- Supporting NOR flash page access
- Supporting Bi-endian

8.4. Block diagram

Figure 8-3 shows block diagram of external bus interface.

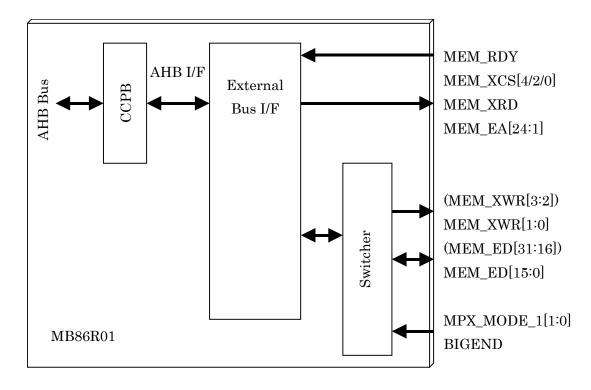


Figure 8-3 Block diagram of external bus interface part

8.5. Related pin

Pin	I/O	No. of pin	Function					
MEM_EA[24:1]	0	24	Address bus					
MEM_XWR[3:0]	0	4	Writing enabled Upper 2 bits are multiplexed pin					
MEM_XRD	0	1	Reading enabled					
MEM_XCS[4]	0	1	Chip select for boot operation					
MEM_XCS[2]	0	1	Chip select					
MEM_XCS[0]	0	1	Chip select					
MEM_ED[31:0]	Ю	32	Data bus Upper 16 bits are multiplexed pin					
MEM_RDY	Ι	1	Ready input for low-speed device					

Table 8-2	External	interface	related	pin
				T .

8.6. Supply clock

AHB clock is supplied to external bus interface. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

8.7. Register

This section describes 32 bit width external bus I/F register. Be sure to access to it in word (32 bit.)

8.7.1. SRAM/Flash mode register 0-7 (MCFMODE0-7)

	n																		
	BaseAddress+0x0000 MCFMODE0 (External pin: MEM_XCS[0])																		
	BaseAddress+0x0004 MCFMODE1 External pin: N/A)											(*1)							
	Base	eAddr	ess+0	x000	8	MCF	MO	DE	2 (E	xt	ernal	pin:N	AEM_	XCS	[2])				
Desister eddress	BaseAddress+0x0008 MCFMODE2 (External pin:MEM_XCS[2]) BaseAddress+0x000C MCFMODE3 (External pin: N/A) (*1) BaseAddress+0x0010 MCFMODE4 (External pin: MEM_XCS[4]) BaseAddress+0x0014 MCFMODE5 (External pin: N/A) (*1) BaseAddress+0x0018 MCFMODE6 (External pin: N/A) (*1) BaseAddress+0x001C MCFMODE7 (External pin: N/A) (*1) BaseAddress+0x001C MCFMODE7 (External pin: N/A) (*1) BaseAddress+0x001C MCFMODE7 (External pin: N/A) (*1) BaseAddress+0x011C MCFMODE7 (External pin: N/A) (*1) Bit No. 31 : 30 : 29 : 28 : 27 : 26 : 25 : 24 : 23 : 22 : 21 : 20 : 19 : 18 : 17 : 10 R/W Reserved R/W X Bit No. 15 14 13 12 11 10 9 8 8 7 6 5 4 3 2 1 0																		
Register address	Base	eAddr	ess+0	x001	0	MCF	MO	DE	4 (E	xt	ernal	pin:N	AEM_	XCS	[4])				
	Base	eAddr	ess+0	x001	4	MCF	MO	DE	5 (E	xt	ernal	pin:]	N/A)			(*1)			
	Base	BaseAddress+0x0018 MCFMODE6 (External pin: N/A) (*1)																	
	Base	eAddr	ess+0	x001	С	MCF	MO	DE	7 (E	xt	ernal	pin:]	N/A)			(*1)			
Bit No.	31	30	29	28	27	: 26	2	5	24		23	22	21	20	: 19	: 18	: 17	: 1	6
Bit field name									Re	se	rved								
R/W									F	R/V	V0								
Initial value										Х	-								
Bit No.	15	14	13	12	11	10	9)	8		7	6	5	4	3	2	1	0)
Bit field name				I	Reserv	/ed						RDY	PAGE	Reserved WDTH					
R/W					R/W	0						R/W	R/W		R/W()	R	/W	
Initial value					Х			_				0	0	Х	Х	Х	0 ((*2)	
*1. MCEMODE1/2/5/	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		

*1: MCFMODE1/3/5/6/7 are access prohibited

*2: Initial value of data width to MEM_XCS[4] MPX_MODE_1[1:0]=2'b01: 2:32 bit

1:16 bit

Bit31-7: Reserved

Others:

Reserved bits.

Write "0" to these bits. Their read value is undefined.

Bit6: RDY (ready mode)

When handshake is performed with low-speed peripherals that use MEM_RDY signal, set this bit to "1". RDY signal at reading should be asserted to "L" at least 2 cycles from 2 cycles before falling edge of MEM_XRD signal to actual falling edge. For the writing operation, the RDY signal should also be asserted to "L" at least 2 cycles from 2 cycles before falling edge of MEM_XWR signal to actual falling edge.

For accessing to device such as SRAM memory without using the MEM_RDY signal, this bit should be set to "0".

- 0: READY mode OFF (initial value)
- 1: READY mode ON

Bit5: PAGE (page access mode) NOR flash page access mode

This bit controls NOR flash page access mode which issues the first address cycle according to FirstReadAddressCycle (FRADC) setting. Then, the access is continuously executed according to Read Access Cycle (RACC) setting until it reaches to 16 byte boundary. In order to select this mode, set Read Address Cycle (RADC) to 0.

- 0: READY mode OFF (initial value)
- 1: READY mode ON

Bit4-2: Reserved

Reserved bits. Write "0" to these bits. Their read value is undefined.

Note:

Writing "1" to these bits are prohibited.

Bit1-0: WDTH (data width)

These bits specify data bit width of the connected device.

- 0: 8 bit (initial value)
- 1: 16 bit
- 2: 32 bit
- 3: Reserved

8.7.2.	SRAM/Flash timing register 0-7 (MCFTIM0-7)
--------	--

	D 111 0.000			1)									
	BaseAddress+0x002	0 MCFTIM0 (Exter	nal pin: MEM_XCS[0])									
	BaseAddress+0x0024	4 MCFTIM1 (Extern	nal pin: N/A)	(*1)									
	BaseAddress+0x002	8 MCFTIM2 (Extern	nal pin: MEM_XCS[2])									
Register address	BaseAddress+0x002	C MCFTIM3 (Exter	nal pin: N/A)	(*1)									
Register address	BaseAddress+0x003	0 MCFTIM4 (Extern	nal pin: MEM_XCS[4])									
	BaseAddress+0x0034	BaseAddress+0x0034 MCFTIM5 (External pin: N/A) (*1)											
	BaseAddress+0x003	(*1)											
	BaseAddress+0x003	C MCFTIM7 (Exter	nal pin: N/A)	(*1)									
Bit No.	31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16									
Bit field name	WIDLC	WWEC	WADC	WACC									
R/W		R/	W										
Initial value	0	5	5	15									
Bit No.	15 : 14 : 13 : 12	11 10 9 8	7 : 6 : 5 : 4	3 2 1 0									
Bit field name	RIDLC	FRADC	RADC	RACC									
R/W		R/	W										
Initial value	15	0	0	15									

*1: MCFTIM1/3/5/6/7 are access prohibited

Bit31-28: WIDLC (Write Idle Cycle: Write idle cycle)

These bits set the number of idle cycle after the write access. When RDY bit is set to "1", specify 2 or more value.

0 1 cycle (initial value)

15 16 cycles

Bit27-24: WWEC (Write Enable Cycle)

These bits set the number of write enable assertion cycle. This setting also affects to MEM_XWR[3:0]. When RDY bit is set to "1", the value should be 3 or more (4 cycles or more.)

- 0 1 cycle
- 5 6 cycles (initial value)
- 14 15 cycles
- 15 Reserved

Bit23-20: WADC (Write Address Setup cycle)

These bits set number of write access setup cycle. Address is output to the cycle; however, write enable is not asserted. When RDY bit is set to "1", the value should be 1 or more (2 cycles or more.)

- 0 1 cycle
- | |
- 5 6 cycles (initial value)
- | |
- 14 15 cycles
- 15 Reserved

Bit19-16: WACC (Write Access Cycle)

These bits specify number of cycle required for write access. The address does not change during the cycle specified in these bits. The WACC value should be larger than the total number of Address Setup Cycle (WADC) and Write Enable Cycle (WWEC).

tWACC >= (tWADC+tWWEC)

When RDY bit is set to "1", the value should be 6 or more (7 cycles or more.)

- 0,1 Reserved
- 2 3 cycles

15 16 cycles (initial value)

Bit15-12: RIDLC (Read Idle Cycle)

These bits set number of idle cycle after read access. They are used to prevent data collision that occurs by write access immediately after the read access.

0 1 cycle

T

15 16 cycles (initial value)

Bit11-8: FRADC (First Read Address Cycle)

These bits are exclusive use for NOR Flash setting that corresponds to page mode access, and are set initial latency in the address of Flash read access.

The address is retained with number of cycle specified by these bits only at the first read access. The subsequent read access is executed according to the number of cycle set in the RACC. MEM_XCS[0/2/4] and MEM_XRD are asserted simultaneously.

When other values than 0 are set to these bits, specify "0" to RADC (Read Address Setup Cycle.)

- 0 0 cycle (initial value)
- T
- 15 15 cycles

Bit7-4: RADC (Read Address Setup cycle)

These bits set number of read address setup cycle which asserts MEM_XCS[0/2/4] and its address but When 0 is selected, MEM XRD and MEM XCS[0/2/4] are asserted not MEM XRD. simultaneously. The specifying value should be within number of the read access setup cycle. When NOR Flash page access mode is applied, set these bits to "0".

When RDY bit is set to "1", the value should be 3 or more (3 cycles or more.)

- 0 0 cycle (initial value)
- 15 15 cycles

Bit3-0: RACC (Read Access Cycle)

These bits set number of cycle required for the read access. Although the address does not change during the cycle specified by these bits, data is fetched at the last cycle.

When RDY bit is set to "1", the value should be 3 or more (4 cycles or more.)

- 0 1 cycle
- 16 cycles (initial value) 15

	BaseAddress+0x0040 MCFAREA0 (External pin: MEM_XCS[0])
	BaseAddress+0x0044 MCFAREA1 (External pin: N/A) (*1)
	BaseAddress+0x0048 MCFAREA2 (External pin: MEM_XCS[2])
Desistan address	BaseAddress+0x004C MCFAREA3 (External pin: N/A) (*1)
Register address	BaseAddress+0x0050 MCFAREA4 (External pin: MEM_XCS[4])
	BaseAddress+0x0054 MCFAREA5 (External pin: N/A) (*1)
	BaseAddress+0x0058 MCFAREA6 (External pin: N/A) (*1)
	BaseAddress+0x005C MCFAREA7 (External pin: N/A) (*1)
Bit No.	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Bit field name	Reserved MASK
R/W	R/W0 R/W
Initial value	X 15 (16MB width)
Bit No.	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Bit field name	Reserved ADDR
R/W	R/W0 R/W
Initial value	X (in order of MEM_XCS[0/2/4]) 64,32,0

8.7.3. SRAM/Flash area register 0-7 (MCFAREA0-7)

*1: This must set not to overlap address area of CS0/2/4 and CS1/3/5/6/7 (refer 8.2 Spec limitation)

Bit31-23: Reserved

Reserved bits.

Write "0" to these bits. Their read value is undefined.

Bit22-16: MASK (Address mask)

These bits set mask value of the one set to ADDR. This external bus interface masks ADDR (masked with setting "1") and internal bus mask address according to the specified mask to compare them. When they are matched, external bus interface accesses to MEM_XCS[4/2/0] signal. [22:16] masks each address [26:20].

(Example)

ADDR = 00001000 (b) MASK = 0000011 (b)

<When the device is selected>

Internal bus address (external interface address): AD = 0x10900000

Mask ADDR & (!MASK) AD [27:20] & (!MASK)

= 00001000 (b) = 00001000 (b) Matched, and this device is selected

<When the device is not selected>

Internal bus address (external interface address): AD = 0x10c00000

Masking ADDR & (!MASK) AD [27:20] & (!MASK) = 00001100 (b) Unmatched, and device is not selected The masking selects area size; in this example, 0x10800000 - 0x10b00000 (4MB) are selected. The bit specified "1" with masking is lost during mask processing. These bits are invalid even if they are set to ADDR. When LSB in the example is 1 (ADDR = 00001001 (b)), the same address field is selected since it is invalid in masking. The correlation of the size in mask setting and address field is shown below.

 $0000000 (b) \rightarrow 1MB$ $0001111 (b) \rightarrow 16MB$
 $0000001 (b) \rightarrow 2MB$ $0011111 (b) \rightarrow 32MB$
 $0000011 (b) \rightarrow 4MB$ $0000111 (b) \rightarrow 8MB$

Note:

Each address field must not overlapped.

Bit15-8: Reserved

Reserved bits. Write "0" to these bits. Their value is undefined.

Bit7-0: ADDR (Address)

These bits specify setting address in the corresponding chip select area. These addresses $(0x0200_0000 - 0x11FF_FFFF)$ are allocated by SRAM/Flash interface in 256MB fixed area. Define corresponding value to [27:20] part of the address.

ADDR (address[27:20])	Setting address of chip select area
0xFF	0x0FF0_0000 (*1)
0xFE	0x0FE0_0000 (*1)
~	~
0x21	0x0210_0000 (*1)
0x20	0x0200_0000 (*1)
0x1F	0x11F0_0000 (*2)
0x1E	0x11E0_0000 (*2)
~	~
0x01	0x1010_0000 (*2)
0x00	0x1000_0000 (*2)

 Table 8-3
 ADDR (address [27:20]) setting value and chip select area's setting address

*1: Address becomes $[31:28] = 0 \times 0$ at ADDR (address [27:20] = 20 - FF setting.

*2: Address becomes $[31:28] = 0 \times 1$ at ADDR (address [27:20] = 00 - 1F setting.

8.7.4. Memory controller error register (MCERR)

Register address		BaseAddress + 0x0200														
Bit No.	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Bit field name		Reserved														
R/W		R/W0														
Initial value		Х														
Bit No.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field name						Rese	erved						Reserved	SFION	Reserved	SFER
R/W		R/W0 R/W R R/W0									R/W0					
Initial value		X 0 0 0 0										0				

Bit31-4: Reserved

Reserved bits.

Write "0" to these bits. Their value is undefined.

Bit3: Reserved

Reserved bit. Write "0" to this bit. Its value is undefined.

Note:

Writing "1" to this bit is prohibited.

Bit2: SFION (SRAM/Flash error interrupt: ON)

This bit validates interrupt at SRAM/Flash error.

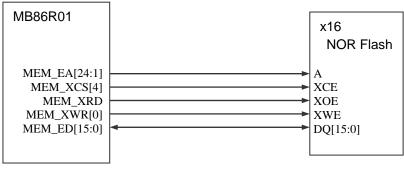
- 0: OFF (initial value)
- 1: ON

Bit1: Reserved

Reserved bit. Write "0" to this bit. Its value is undefined.

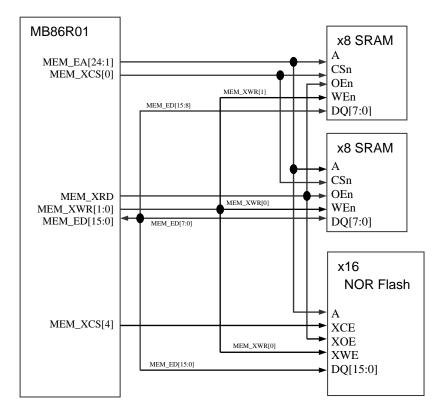
Bit0: SFER (SRAM/Flash error)

This bit indicates that the area without mapping is accessed. In this case, memory controller returns error to internal bus; at the same time, this bit, is set.

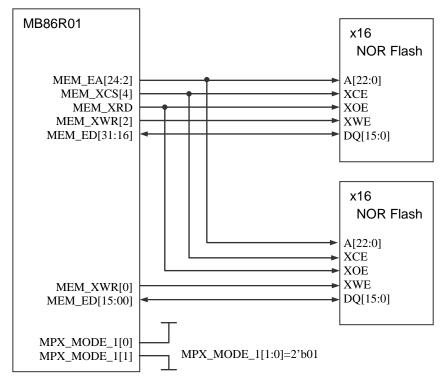

When the value is "1", it is cleared by writing "0" Only when "1" is set to this bit, clear operation is available.

0: No error (Initial value)

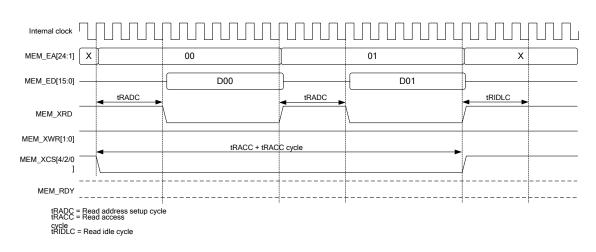
1: Error


8.8. Connection example

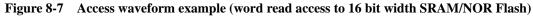
16 bit NOR Flash

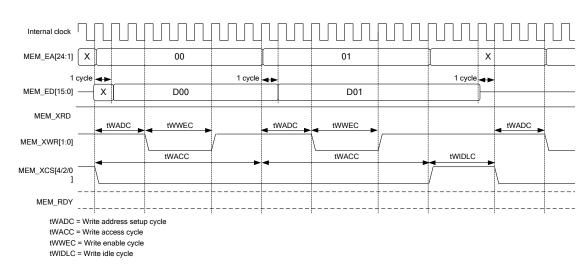


16 bit NOR Flash + 8 bit SRAM × 2



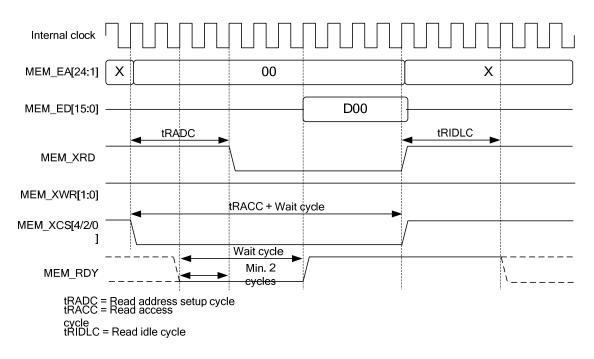
32 bit NOR Flash




Figure 8-6 Connection example of 32 bit NOR Flash

8.9. Example of access waveform

Word read access to 16 bit width SRAM/NOR Flash



Word write access to 16 bit width SRAM/NOR Flash

Figure 8-8 Access waveform example (word write access to 16 bit width SRAM/NOR Flash)

Read/Write to low-speed device

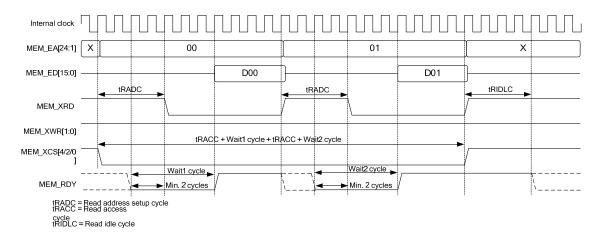
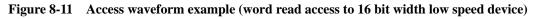




Figure 8-10 Access waveform example (half-word write access to 16 bit width low speed device)

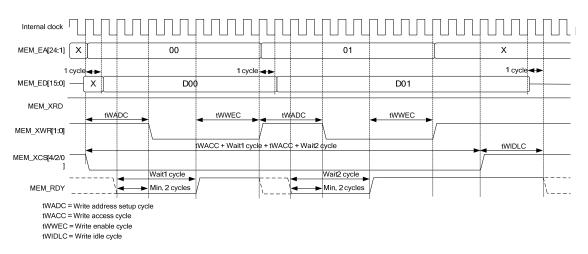


Figure 8-12 Access waveform example (word write access to 16 bit width low speed device)

Page read of 16 bit NOR Flash

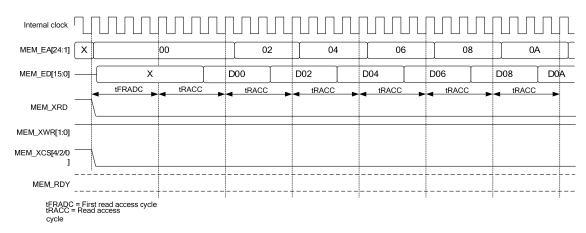


Figure 8-13 Access waveform example (16 bit NOR Flash page read)

8.10. Operation

External bus interface equips 3 chip select signals and controls SRAM and Flash.

8.10.1. External bus interface

This interface has 256MB address space that each address is able to be set arbitrarily (actual max. address size is 32MB with taking bit width of external output address into account.)

Different timing is able to be set to each chip select. NOR Flash is connectable and it accesses in normal SRAM access.

In SRAM access, MEM_XCS[4/2/0] is selected at 1 access.

When access is performed with wider bit width than the target's, it is converted to continuous access.

In continuous access, MEM_XCS[4/2/0] is fixed to L and address is changed.

For instance, the case that 32 bit read access is proceeded from internal bus to 16 bit width device, address is changed from 0 to 2, and the data is continuously fetched from MEM_ED[15:0] according to the transition timing while MEM_XCS[4/2/0] is fixed to L (refer to "8.9 Example of access waveform".) Then the data suited to endian is returned to the internal bus.

When access is proceeded with narrower bit width than the target's (for instance, the byte access to 16 bit target), byte access is carried out with MEM_XWR[3:0] signal control during writing operation (for external bus interface, only necessary data is output.)

8.10.2. Low-speed device interface function

The external bus interface has interface function with low-speed device and MEM_RDY pin which are used by connecting RDY signal to MEM_RDY pin of this LSI. MEM_RDY pin is available only when wait state is at L and ready state is at H. RDY signal at reading should be asserted to "L" at least 2 cycles from 2 cycles before falling edge of MEM_XRD signal to actual falling edge. For the writing operation, the RDY signal should also be asserted to "L" at least 2 cycles from 2 cycles before falling edge of MEM_XRD signal to actual falling edge.

For the access exceeding external data bus width (e.g. word (32 bit) access to 16 bit device), the access is carried out "Read \rightarrow Read, Write \rightarrow Write" continuously until all exceeded bits are covered.

In this case, MEM_XCS[4/2/0] signal is not negated during the access regardless of setting.

When the device using negation of MEM_XCS[4/2/0] signal, the access should be done within the target width. For the device without using RDY function (e.g. SRAM memory), be sure to set "0" to RDY bit of applied chip select.

When RDY signal is H from the access start, the access is carried out in the same method as normal SRAM access.

If RDY becomes L or high pulse during access cycle, the operation is not assured.

* This function cannot be applied to the RDY/BUSY signals of the Flash memory.

8.10.3. Endian and byte lane to each access

The external bus interface corresponds to both little endian and big endian. These switches are set with external pin, BIGEND. External data bus width is set with external pin, MPX_MODE_1[1:0]. Correlation of each endian, external data bus width, and byte lane to each access is shown below.

Endion	A		Target width	Internel hue	Enabled byte lene	Corresponding internal													
Endian (BIGEND)	Access size	MPX_MODE_ 1[1:0]	(WDTH)	address	Enabled byte lane	Corresponding internal bus data	MEM_XWR [3:2]	[1:0]											
(BIGEND)	SIZE	1[1.0]	(WDTH)	auuress			[3.2]	[1.0]	0										
					MEM_ED[7:0]	1 st : H*DATA[7:0]			0										
Word		8bit	0	MEM_ED[7:0]	2 nd : H*DATA[15:8]	not active	10	-											
	16 bit			MEM_ED[7:0]	3 rd : H*DATA[23:16]	-		1											
		(≠2'b01)			MEM_ED[7:0]	4 th : H*DATA[31:24]	-		1										
			, , , , , , , , , , , , , , , , , , ,	16bit	0	MEM_ED[15:0]	1 st : H*DATA[15:0]	not active	00	0									
				MEM_ED[15:0]	2 nd : H*DATA[31:16]			1											
		32bit(prohibited)	-	-	-	-	-	-											
				MEM_ED[7:0]	1 st : H*DATA[7:0]	not active		0											
			8bit	8bit	0	MEM_ED[7:0]	2 nd : H*DATA[15:8]	not dout o	10	0									
			0.511	Ũ	MEM_ED[7:0]	3 rd : H*DATA[23:16]	not active		1										
		32 bit			MEM_ED[7:0]	4 th : H*DATA[31:24]	not active		1										
		(=2'b01)	16bit	0	MEM_ED[15:0]	1 st : H*DATA[15:0]	not active	00	0										
			TODIL	0	MEM_ED[15:0]	2 nd : H*DATA[31:16]	not active	00	1										
			32bit	0	MEM_ED[31:0]	H*DATA[31:0]	00	00	0										
			0	MEM_ED[7:0]	1 st : H*DATA[7:0]		10	0											
		ot ''		MEM_ED[7:0]	2 nd : H*DATA[15:8]	not active	10	0											
		16 bit	8bit	2	MEM_ED[7:0]	1 st : H*DATA[23:16]		4.0	1										
					MEM_ED[7:0]	2 nd : H*DATA[31:24]	not active	10	1										
		(≠2'b01)		0	MEM_ED[15:0]	H*DATA[15:0]	not active	00	0										
			16bit	2	MEM_ED[15:0]	H*DATA[31:16]	not active	00	1										
			32bit(prohibited)	-	-	-	-	-	-										
	Half-Word		ozbit(prombitod)	0	MEM_ED[7:0]	1 st : H*DATA[7:0]			0										
				0	MEM_ED[7:0]	2 nd : H*DATA[15:8]	not active	10	0										
			8bit	2	MEM_ED[7:0]	1 st : H*DATA[23:16]			1										
Little		32 bit		2	MEM_ED[7:0]		not active	10	1										
(=1'b0)		(=2'b01)		0	MEM_ED[15:0]	2 nd : H*DATA[31:24] H*DATA[15:0]	not active	00	0										
		(-2001)	(=2 001)	(=2 001)	(=2 001)	(=2 DUT)	(=2 001)	(=2 001)	(=2 001)	(-2 501)	(-2.501)	(=2.001)	16bit	2	MEM_ED[15:0]	H*DATA[13:0] H*DATA[31:16]		00	1
			32bit	-	MEM_ED[15:0]	H*DATA[15:0]													
				2	MEM_ED[31:16]	H*DATA[31:16]	00	11	0										
				0	MEM_ED[7:0]	H*DATA[7:0]	not active	10	0										
			8bit	1	MEM_ED[7:0]	H*DATA[15:8]	not active	10	0										
				2	MEM_ED[7:0]	H*DATA[23:16]	not active	10	1										
		16 bit		3	MEM_ED[7:0]	H*DATA[31:24]	not active	10	1										
		(≠2'b01)		0	MEM_ED[7:0]	H*DATA[7:0]	not active	10	0										
		(_ 200.)	16bit	1	MEM_ED[15:8]	H*DATA[15:8]	not active	01	0										
				2	MEM_ED[7:0]	H*DATA[23:16]	not active	10	1										
				3	MEM_ED[15:8]	H*DATA[31:24]	not active	01	1										
			32bit(prohibited)	-	-	-	-	-	-										
				0	MEM_ED[7:0]	H*DATA[7:0]	not active	10	0										
	Byte		8bit	1	MEM_ED[7:0]	H*DATA[15:8]	not active	10	0										
			obit	2	MEM_ED[7:0]	H*DATA[23:16]	not active	10	1										
				3	MEM_ED[7:0]	H*DATA[31:24]	not active	10	1										
				0	MEM_ED[7:0]	H*DATA[7:0]	not active	10	0										
		32 bit	16bit	1	MEM_ED[15:8]	H*DATA[15:8]	not active	01	0										
		(=2'b01)	TODIC	2	MEM_ED[7:0]	H*DATA[23:16]	not active	10	1										
				3	MEM_ED[15:8]	H*DATA[31:24]	not active	01	1										
				0	MEM_ED[7:0]	H*DATA[7:0]	11	10	0										
				1	MEM_ED[15:8]	H*DATA[15:8]	11	01	0										
								32bit		MEM ED[23:16]	H*DATA[23:16]	10	11	0					
				3	MEM_ED[31:24]	H*DATA[31:24]	01	11	0										

Table 8-4Relation of byte lane at little endian

H*DATA: HWDATA or HRDATA is internal signals

Endian (BIGEND)	Access size	MPX_MODE_ 1[1:0]	Target width (WDTH)	Internal bus address	Enabled byte lane	Corresponding internal bus data	MEM_XWR [3:2]	MEM_XWR [1:0]	MEM_EA[
					MEM_ED[15:8]	1 st : H*DATA[31:24]		01	0												
			01-14	0	MEM_ED[15:8]	2 nd : H*DATA[23:16]		01	0												
		101.1	8bit	0	MEM_ED[15:8]	3 rd : H*DATA[15:8]	not active		1												
		16 bit			MEM_ED[15:8]	4 th : H*DATA[7:0]		01	1												
		(≠2'b01)			MEM_ED[15:0]	1 st : H*DATA[31:16]			0												
			16bit	0	MEM ED[15:0]	2 nd : H*DATA[15:0]	not active	00	1												
			32bit(prohibited)	-		-	-	-	-												
	Word -		(MEM_ED[15:8]	1 st : H*DATA[31:24]			0												
		32 bit (=2'b01)			MEM_ED[15:8]	2 nd : H*DATA[23:16]		01	0												
			8bit	0	MEM_ED[15:8]	3 rd : H*DATA[15:8]	not active		1												
							MEM_ED[15:8]	4 th : H*DATA[7:0]		01	1										
							MEM_ED[15:0]	1 st : H*DATA[31:16]			0										
						16bit	0	MEM_ED[15:0]	2 nd : H*DATA[15:0]	not active	00	1									
			32bit	0	MEM_ED[31:0]	H*DATA[31:0]	00	00	0												
			JZDIL	0	MEM_ED[31.0] MEM_ED[15:8]		00	00	0												
				0	MEM_ED[15:8]	1 st : H*DATA[31:24]	not active	UI	0												
			8bit	2		2 nd : H*DATA[23:16]		01													
		16 bit		2	MEM_ED[15:8]	1 st : H*DATA[15:8]	not active	01	1												
		(≠2'b01)			MEM_ED[15:8]	2 nd : H*DATA[7:0]		00	1												
			16bit	0	MEM_ED[15:0]	H*DATA[31:16]	not active	00	0												
				2	MEM_ED[15:0]	H*DATA[15:0]	not active	00	1												
			32bit(prohibited)	-	-	-	-	-	-												
	Half-Word			0	MEM_ED[15:8]	1 st : H*DATA[31:24]	not active	01	0												
			8bit		MEM_ED[15:8]	2 nd : H*DATA[23:16]	not douve		0												
		32 bit (=2'b01)				obit	2	MEM_ED[15:8]	1 st : H*DATA[15:8]	not active	01	1									
Big								MEM_ED[15:8]	2 nd : H*DATA[7:0]	not active		1									
(=1'b1)						(=2'b01)	(=2'b01)	(=2'b01)	(=2'b01)	(=2'b01)	16bit	0	MEM_ED[15:0]	H*DATA[31:16]	not active	00	0				
												-	-		ТОВІІ	2	MEM_ED[15:0]	H*DATA[15:0]	not active	00	1
																				0.01-11	0
			32bit	2	MEM_ED[15:0]	H*DATA[15:0]	11	00	0												
												0	MEM_ED[15:8]	H*DATA[31:24]	not active	01	0				
				1	MEM_ED[15:8]	H*DATA[23:16]	not active	01	0												
			8bit	2	MEM ED[15:8]	H*DATA[15:8]	not active	01	1												
				3	MEM_ED[15:8]	H*DATA[7:0]	not active	01	1												
		16 bit		0	MEM_ED[15:8]	H*DATA[31:24]	not active	01	0												
		(≠2'b01)		1	MEM_ED[7:0]	H*DATA[23:16]	not active	10	0												
			16bit	2	MEM_ED[15:8]	H*DATA[15:8]	not active	01	1												
				3	MEM_ED[7:0]	H*DATA[15:0]	not active	10	1												
			20hit/prohibited	-			not active	-	-												
			32bit(prohibited)			-	-														
	D.L.			0	MEM_ED[15:8]	H*DATA[31:24]	not active	01	0												
	Byte		8bit	1	MEM_ED[15:8]	H*DATA[23:16]	not active	01	0												
				2	MEM_ED[15:8]	H*DATA[15:8]	not active	01	1												
				3	MEM_ED[15:8]	H*DATA[7:0]	not active	01	1												
				0	MEM_ED[15:8]	H*DATA[31:24]	not active	01	0												
		32 bit	16bit	1	MEM_ED[7:0]	H*DATA[23:16]	not active	10	0												
		(=2'b01)	1001	2	MEM_ED[15:8]	H*DATA[15:8]	not active	01	1												
				3	MEM_ED[7:0]	H*DATA[7:0]	not active	10	1												
				0	MEM_ED[31:24]	H*DATA[31:24]	01	11	0												
			201-14	1	MEM_ED[23:16]	H*DATA[23:16]	10	11	0												
			32bit	2	MEM_ED[15:8]	H*DATA[15:8]	11	01	0												
	1		1	3	MEM_ED[7:0]	H*DATA[7:0]	11	10	0												

 Table 8-5
 Relation of byte lane at big endian

H*DATA: HWDATA or HRDATA is internal signals

9. DDR2 controller

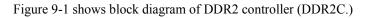
This chapter describes function and operation of DDR2 controller (DDR2C.)

9.1. Outline

DDR2C adopts AHB bus used in the register access as HOST IF and AXI bus used in the memory access. Memory IF supports DDR2SDRAM (DDR2-400.)

9.2. Feature

DDR2C has following features:


a. AHB IF

- a) Register access by slave function of AHB IF
- b) Register setting contents
 - a- Operation setting of DDR2C
 - b-Initialization sequence control (DDR IF macro setting, OCD/ODT setting on DDR2C side, SDRAM initialization command issue, and SDRAM control setting)
- b. AXI IF
 - a) Storing read/write transactions to internal FIFO by slave function of AHB IF
 - b) Internal FIFO composition
 - a- Address FIFO: Depth = 8 28 (controllable with register setting).
 - b-Write data FIFO: Depth = 52
 - c- Read data FIFO: Depth = 62
 - d-Read control FIFO: Depth = 28
- c. DRAM IF
 - a) 512M bit/256M bit DDR2SDRAM (SSTL18) × 2pcs. (recommended) or 1pc.

(DDR2-400/533/667/800 in compliance with JESD79-2C is used as DDR2-400; in addition, SDRAM with ODT=50 Ω setting is recommended.)

- b) Switch of initialization mode and normal operation mode
- c) SDRAM usage restriction (AL = 0, CL = 3, WL = 2, BL = 4, Bank = 4)
- d) Automatic issuing function of refresh command
- e) Max. 166MHz of SDRAM CLK (double edge: 333MHz)

9.3. Block diagram

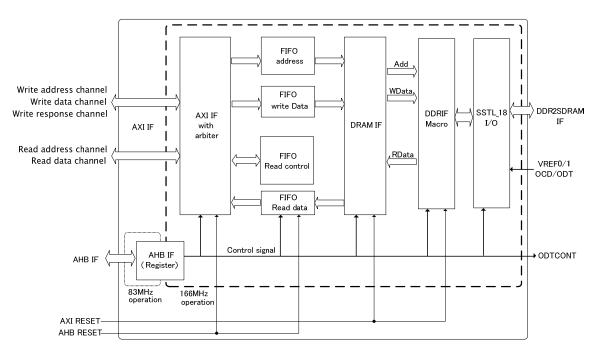


Table 9-1 shows each function of the DDR2C block.

Block	Function
AHB IF	Slave function of AHB IFControl register.
AXI IF	Slave function of AXI IFFIFO control function
FIFO	 Address/Write Data/Read Control/Read Data storage FIFO
DRAM IF	DDRIF macro control functionSDRAM IF control function
DDRIF macro	Connection between DRAM IF module and IO (Read data's importing phase adjustment)Built-in DLL
SSTL_18 I/O	 STUB series terminated logic for 1.8V single end buffer (OCD and ODT functions are embedded) STUB series terminated logic for 1.8V differential buffer (OCD and ODT functions are embedded) ODT auto. adjustment function

Table 9-1	Individual	block	function
Iunic / I	mainau	DIOCIN	runction

9.4. Supply clock

AHB clock is supplied to DDR2 controller. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

9.5. Register

This section describes DDR2 controller (DDR2C) register.

9.5.1. Register list

Table 9-2 shows DDR2C register list.

Addre	SS	Register name	Abbreviation	Description
Base	Offset	5	ADDIEviation	Description
$F300_{-}0000_{H}$	$+00_{\rm H}$	DRAM Initialization Control Register	DRIC	Initialization control register
		DRAM Initialization Command Register [1]	DRIC1	Initialization control command register 1
		DRAM Initialization Command Register [2]	DRIC2	Initialization control command register 2
		DRAM CTRL ADD Register	DRCA	Address control register
		DRAM Control Mode Register	DRCM	Mode control register
	$+ 0A_{H}$	DRAM CTRL SET TIME1 Register	DRCST1	Timing setting register 1
	$+0C_{H}$	DRAM CTRL SET TIME2 Register	DRCST2	Timing setting register 2
	$+ 0E_{H}$	DRAM CTRL REFRESH Register	DRCR	Refresh control register
	$+ 10_{\rm H}$ -	(Reserved)	-	Access prohibited
	$+ 1F_{H}$			
	$+20_{\rm H}$	DRAM CTRL FIFO Register	DRCF	FIFO control register
		(Reserved)	-	Access prohibited
	+ 2F _H			
		AXI Setting	DRASR	AXI operation setting register
		(Reserved)	-	Access prohibited
	$+4F_{H}$			
		DRAM IF MACRO SETTING DLL Register	DRIMSD	DDRIFmacro setting register
		(Reserved)	-	Access prohibited
	+ 5F _H			
		DRAM ODT SETTING Register	DROS	ODT setting register
		(Reserved)	-	Access prohibited
	$+63_{\rm H}$			
		IO buffer setting ODT1	DRIBSODT1	IO ODT1 setting register
		(Reserved)	-	Access prohibited
	$+ 6F_{H}$			
		ODT Auto Bias Adjust	DROABA	ODT bias self adjustment register
		(Reserved)	-	Access prohibited
	+ 83 _H			
		ODT Bias Select Register	DROBS	ODT bias selection register
		(Reserved)	-	Access prohibited
	+ 96 _H			
		OCD Impedance Setting Register1	DROISR1	OCD impedance setting register 1
	$+9A_{\rm H}$	OCD Impedance Setting Register2	DROISR2	OCD impedance setting register 2

Table 9-2DDR2C register list

Description format of register

Following format is used for description of register's each bit in "9.5.2 DRAM initialization control register (DRIC)" to "9.5.18 OCD impedance setting register2 (DROISR2)".

Address		Base address + Offset														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

9.5.2. DRAM initialization control register (DRIC)

DRIC register is used to initialize DRAM; in addition, it controls initialization mode setting, issue of initialization command, and others.

Address		$F300_0000_{\rm H} + 00_{\rm H}$														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DRINI	CKEN	-	-	-	-	-	-	-	-	-	-	REFBSY	DDRBSY	CMDRDY	DRCMD
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	W
Initial value	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

	Bit field	Description							
No.	Name	Description							
15	DRINI	This sets DRAM initialization operation mode.							
		0 Normal operation							
		1 Initialization mode (initial value)							
		When initialization is completed, this bit becomes 0. Only when DRINI bit is 1, CKEN and DRCMD bits of this register, and the DRAM initialization command register [1]/[2] become valid. When this bit is 0, these registers and bits are don't care.							
		 Note: Data access and auto. refresh to DRAM are not performed in the initialization operation mode. Only when there is no access request to DDR, DRINI bit can be changed to 0 → 1. The access request to DDR is able to be judged by DDRBSY (bit 2.) When DRINI bit is "1", do not access to data from AXI. When data access is requested in the state of DRINI = 1, DDR2 controller may keep occupying the AXI bus. Moreover, the data requested from AXI may be destroyed. 							
14	CKEN	This is CKE control signal to DDR. Normal operation (DRINI = 0): CKE output always becomes "1" nitialization mode (DRINI = 1): CKE output becomes "1"							
13-4	(Reserved)	Reserved bits. Write access is ignored.							
3	REFBSY	This bit indicates refresh cycle to DDR.							
		0 It is not refresh cycle							
		1 It is refresh cycle							
2	DDRBSY	This bit indicates status that data access is requested to DDR.							
		0 Neither command request to DDR nor access to DDR occurs							
		1 Command request to DDR or access operation to DDR occurs (busy)							
1	CMDRDY	This bit indicates DRAM command is ready. It also shows whether "1" is able to be written to DRCMD bit (writing command bit to DRAM.)							
		0 1 cannot be written to DRCMD (bit 0)							
		1 1 can be written to DRCMD							
		 This bit indicates valid value for only at DRINI = 1. CMDRDY bit becomes "1" in the following cases: Between writing "1" to DRCMD (bit 0) to completion of the command. Accessing to DRAM is not completed when DRINI bit is changed to 0 → 1 without reserved. 							

	Bit field	Description
No.	Name	Description
0	DRCMD	This is writing command bit to DRAM. Writing "1" to this bit outputs setting condition of DRAM initialization command register [1]/[2] to DRAM during 1ck period of time.
		 Note: When DRCMD bit does not issue command in the initialization mode, the state becomes NOP or DSEL to DRAM. Only when CMDBSY (bit 1) is "0", "1" is able to be written to this bit.

9.5.3. DRAM initialization command register [1] (DRIC1)

This register sets each control signal value of DRAM at the initialization operation.

When "1" is written to DRCMD in the initialization mode (DRINI = 1), the signal corresponding to DRAM bus is driven by this setting value.

Address		$F300_0000_{\rm H} + 02_{\rm H}$														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	-	-	-	#CS	#RAS	#CAS	#WE	BA2	BA1	BA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	1	1	1	1	1	1

9.5.4. DRAM initialization command register [2] (DRIC2)

This register sets DRAM address signal value at the initialization operation. When "1" is written to DRCMD in the initialization mode (DRINI = 1), the signal corresponding to DRAM bus is driven by this setting value.

Address		$F300_0000_{\rm H} + 04_{\rm H}$														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

DRAM initialization method

All DRAM is initialized by CPU.

DDR2 controller is structured that each signal conductor necessary for the DRAM setting can be driven by the register value in the initialization mode. Set certain value to this register beforehand and "1" to command bit (DRCMD) to execute the setting command to DRAM.

To issue "Precharge all (PALL)" command to DRAM

1) Set "Bit[5:0] = 001000(b)" to the DRAM initialization command register [1].

- 2) Set "Bit[13:0] = 0001000000000(b)" to the DRAM initialization command register [2].
- (Setting order of these 2 registers is not specified.)
- 3) Write "1" to bit 0 of the DRAM initialization control register.

The value set at 1) and 2) is output to DRAM for 1ck period of time, and this becomes command to DRAM.

- Command to DRAM without command execution in the initialization mode is NOP or DSEL
- For each control method of DRAM command and initialization, refer applied DRAM data sheet.

9.5.5. DRAM CTRL ADD register (DRCA)

This register sets items such as capacity of DRAM to be connected.

 $06_{\rm H}$ - $0C_{\rm H}$ register settings related to DDR2 controller's DRAM operation should be fixed before completing DRAM initialization.

Address		$F300_0000_{\rm H} + 06_{\rm H}$														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	TY	PE	Bus16	-	-	-	Bankl	Range		RowI	Range			ColR	lange	
R/W	R/	W	R/W	R/W	R/W	R/W	R/	W		R/	W			R/	'W	
Initial value	1	1	0	Х	Х	Х	0	1	0	0	1	0	0	0	1	0

	Bit field	- Description						
No.	Name	Description						
15-14	TYPE	Operation mode of DRAM control core is set.						
		11 DRAM control core operates in the DDR2SDRAM mode						
		Others Reserved (setting prohibited)						
13	Bus16	This specifies bus width of DRAM connected to external part.						
		0 32 bit						
		1 16 bit						
		 Remark: Use DQ[15:0], DQS0/1, and DM0/1 See the pin specifications for process of unused DQ[31:16], DQS2/3, and DM2/3 						
12-10	(Reserved)	Reserved bits. Write access is ignored.						
9-8	BankRange	Bank address is set. Since only 4 banks are applied, these bits are ready only and fixed to 01(b.)						
7-4	RowRange	Row address range is set.						
		0001 4096 (12 bit)						
		0010 8192 (13 bit)						
		Others Reserved (setting prohibited)						
3-0	ColRange	Col address range is set.						
		0001 256 (8 bit)						
		0010 512 (9 bit)						
		0100 1024 (10 bit)						
		Others Reserved (setting prohibited)						

9.5.6. DRAM control mode register (DRCM)

This register sets operation mode of DRAM, and the same setting as DRAM should be set. The operation mode is unable to be changed due to DDRIF macro and other restrictions.

Address		$F300_0000_{H} + 08_{H}$														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	-	BT	-		AL		-		CL		-		BL	
R/W	R/W	R/W	R/W	R	R/W		R		R/W		R/W		R/W		R/W	
Initial value	Х	Х	Х	0	Х	0	0	0	Х	0	1	1	Х	0	1	0

	Bit field	Description					
No.	Name	— Description					
15-13	(Reserved)	Reserved bits. Write access is ignored.					
12	BT	Only sequential is applied in the burst type setting. Setting to DRAM should also be "sequential". 0 Sequential (initial value) 1 Reserved (setting prohibited)					
11	(Reserved)	Reserved bit. Write access is ignored.					
10-8	AL	Additive latency is set. This module operates with $AL = 0$, and it should also be set to DRAM.					
7	(Reserved)	Reserved bit. Write access is ignored.					
6-4	CL	CAS latency is specified. 011 CL = 3 (fixed) Others Reserved (setting prohibited) DRAM setting should also have the same as this register's.					
3	(Reserved)	Reserved bit. Write access is ignored.					
2-0	BL	Burst length is specified. 010 BL = 4 (fixed) Others Reserved (setting prohibited) DRAM setting should also have the same as this register's.					

Note:

- The DRCM register is unable to be used for DRAM initialization.
- Set operation mode of DRAM control core at normal operation to this register. When DRINI bit (bit 15) of the DRAM initialization control register becomes "0" (normal operation mode), DRAM control core operates according to the DRCM register setting. Be sure to complete the setting before "0" is set to the DRINI bit.

9.5.7. DRAM CTRL SET TIME1 Register (DRCST1)

This register sets access timing to DRAM. It should be set with correlation of internal clock frequency and DRAM spec to be used.

Address		$F300_0000_{\rm H} + 0A_{\rm H}$														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-		TRCD		-		TRAS		-		TRP			TI	RC	
R/W	R/W		R/W		R/W		R/W		R/W		R/W			R/	'W	
Initial value	Х	1	1	1	Х	1	1	1	Х	1	1	1	1	1	1	1

	Bit field	Description	
No.	Name	– Descripti	on
15	(Reserved)	Reserved bit.	
14.10	TROP	Write access is ignored.	· • • • • • • • • • • • • • • • • • • •
14-12	TRCD	RAS to CAS delay time (rRCD : Active to read or w	rite command delay)
		Bit[14:12] Delay time (number of clock) 000 - 001 - 010 2 011 3 100 4 101 5 110 6 111 7	Reserved (Setting prohibited)
11	(Reserved)	Reserved bit. Write access is ignored.	
10-8	TRAS	Bit[10:8] Delay time (number of clock) 000 - 001 5 010 6 011 7 100 8 101 9 110 10	and) Reserved (Setting prohibited)
		111 11	(Initial value)
7 6-4	(Reserved)	Reserved bit. Write access is ignored. Precharge time (tRP : Precharge period)	
		Bit[6:4] Delay time (number of clock)	
		000 - 001 3 010 4 011 5 100 6 101 7 110 8 111 9	Reserved (Setting prohibited)

0
FUJITSU

1	Bit field		Description	
No.	Name		Descriptio	511
3-0	TRC	RAS cycle time (tRC : Active to active/Auto. refresh	n command time)
		Bit[3:0]	Delay time (number of clock)	
		0000	-	Reserved
		0001	-	(Setting prohibited)
		0010	-	
		0011	-	
		0100	-	
		0101	-	
		0110	8	
		0111	9	
		1000	10	
		1001	11	
		1010	12	
		1011	13	
		1100	14	
		1101	15	
		1110	16	
		1111	17	(Initial value)
		For ACT comman	nd interval, larger value of either rR	C and rRAS+rRP+tWR is used.

9.5.8. DRAM CTRL SET TIME2 register (DRCST2)

This register sets access timing to DRAM. It should be set by the correlation between DRAM spec and inner clock frequency.

Address							F3	$F300_{0000_{\rm H}} + 0C_{\rm H}$													
Bit	15 14 13 12 11 10 9 8								7	6	5	4 3 2			1	0					
Name		-	-			TR	FC		-	-	TR	RD	-	TWR							
R/W		R/	W			R/	W		R/W	R/W	R/	W	R/W	V R/W							
Initial value	X 1 1 0 1 0 1 1								Х	Х	1	1	Х	1	0	1					

	Bit field		Derector	
No.	Name		Description	on
15-12	(Reserved)	Reserved bits.		
		Write access is igno		
11-8	TRFC	Auto. refresh comm	hand period (tRFC : Auto. refresh	to active/Auto. refresh command time)
		D1511.03		
			Cycle time (number of clock)	
			4	
			5	
			6	
			7	
			8	
			9	
			10	
			11	
			12	
			13	
			14	
			15	(Initial value)
			16	
		1101	17	
		1110	18	
		1111	19	
7-6	(Reserved)	Reserved bits.	wad	
5.4	TDDD	Write access is igno		hands A to active hands D commond namical
5-4	TRRD	Active command in	terval for when continuously act	bank A to active bank B command period) ivating RAS in different bank is set in cycle.
			Cycle time (number of clock)	
			3	(Initial value)
		Others ·	-	Reserved (setting prohibited)
3	(Reserved)	Reserved bit.		
5	(Reserved)	Write access is igno	ored.	
L		0		

FUJITSU

	Bit field		Descrip	tion
No.	Name	_	Descrip	5000
2-0	TWR		y time (tWR : Write recovery time) y time of DRAM is set in cycle.	
		Bit[2:0]	Cycle time (number of clock)	
		000	-	Reserved (setting prohibited)
		001	2	
		010	3	
		011	4	
		100	5	
		101	6	(Initial value)
		110	-	Reserved (setting prohibited)
		111	-	

9.5.9. DRAM CTRL REFRESH register (DRCR)

This register sets auto. refresh occurrence interval to DRAM. After changing this register value, refresh occurs irregularly.

Address							F3	00_000	$00_{\rm H} + 0$	E _H						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	-	CNTLD				REF	CNT			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				R/	′W			
Initial value	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
15-9	(Reserved)	Reserved bits. Write access is ignored.
8	CNTLD	Counter load. REF_CNT value is forcibly loaded into internal counter. When this bit is set to $0 \rightarrow 1$, REF_CNT value of bit[7:0] is forcibly loaded into internal refresh counter. This is used when setting value needs to be applied, such as after REF_CNT value change. This bit does not need to be rewritten to 0 immediately after loaded because it is performed after detecting the bit change. However, this bit keeps the writing value. If bit value is not 0 at executing load operation, "1" should be written after writing "0". Although CNTLD is not used after REF_CNT change, it operates with the changed REF_CNT by having the period before setting REF_CNT.
7-0	REF_CNT	Refresh count. Auto. refresh request occurrence is set in 16 cycle.
		$00_{\rm H}$ Refresh request is continuously issued. Priority of refresh is higher than the read/write. Although access request to DRAM occurs, only refresh occurs with this setting.
		$01_{\rm H}$ - FF _H Refresh request occurs in REF_CNT × 16 clock interval. If DRAM data is accessed at refresh request, refresh does not start until the access is completed.

9.5.10. DRAM CTRL FIFO register (DRCF)

This is DDR2C's internal FIFO control related register.

Address		$F300_0000_{\rm H} + 20_{\rm H}$														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	*1	-	-	-	-	-	-	-	-	-	-	FIFO CNT				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			R/W		
Initial value	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	1	0	1	1	0

*1: FIFO_ARB

	Bit field		Descriptio	-									
No.	Name		Descriptio	11									
15	FIFO_ARB	Capture bandwidt	h is improved.										
		0 Default											
		1 Capture	bandwidth is improved.										
14-5	(Reserved)	Reserved bits. Write access is ig	nored.										
4-0	FIFO_CNT	When picture flic	t. stage setting of address FIFO (FUI kers due to AXI access latency at u of FIFO stage and decreasing AXI I	ising display and capture, it is rec	overed by								
		Bit[4:0]	Address FIFO number of stage		1								
		$00_{\rm H} - 01_{\rm H}$	-	Reserved (setting prohibited)									
		02 _H	8										
		03 _H	9										
		$04_{\rm H}$	10]								
		05 _H	11										
		06 _H	12										
		$07_{\rm H}$	13										
		$08_{\rm H}$	14										
		09 _H	15										
		$0A_{H}$	16										
		$0B_{H}$	17										
		0C _H	18										
		$0D_{H}$	19										
		0E _H	20										
		0F _H	21										
		10 _H	22										
		11 _H	23										
		12 _H	24										
		13 _H	25		<u> </u>								
		14 _H	26		<u> </u>								
		15 _H	15 _H 27										
		16 _H	28	(Initial value)									
		17 _H - 1F _H	-	Reserved (setting prohibited)									

9.5.11. AXI setting register (DRASR)

This register sets AXI interface operation.

Address		$F300_0000_{\rm H} + 30_{\rm H}$														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	CACHE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0

	Bit field	Description
No.	Name	Description
15-1	(Reserved)	Reserved bits. Write access is ignored.
0	CACHE	CACHE On/Off of cash operation at reading are performed.
		0 Cache off (initial value)
		1 Cache on
		 When single reading continuously occurs in a single access (16 byte) to DRAM, reading operation from AXI is enabled by the cached data in AXI module instead of accessing to DRAM. However cache is cleared in the following conditions. Burst reading access occurs to AXI bus in DDR2C Write access occurs to AXI bus in DR2C

9.5.12. DRAM IF MACRO SETTING DLL register (DRIMSD)

This register is for DDR2-SDRAM interface macro setting which drives macro pin corresponding to each bit by the setting value. This is also for DLL timing setting.

Address							F3	00_000	0H + 5	60H						
Bit	15											0				
Name	-	IS	FT_3[2	:0]	-	ISFT 2[2:0]			-	IS	FT_1[2	:0]	-	IS	FT_0[2	:0]
R/W	R/W		R/W		R/W		R/W		R/W		R/W		R/W		R/W	
Initial value	Х	1	1	0	Х	1	1	0	Х	1	1	0	Х	1	1	0

	Bit field	- Description
No.	Name	Description
15	(Reserved)	Reserved bit. Write access is ignored.
14-12	ISFT_3[2:0]	Value of ISFT_3[2:0] 110 (Initial value) 101 Normal operation setting value (set to 101 at DRAM initialization) Others Reserved (setting prohibited)
11	(Reserved)	Reserved bit. Write access is ignored.
10-8	ISFT_2[2:0]	Value of ISFT_2[2:0] 110 (Initial value) 101 Normal operation setting value (set to 101 at DRAM initialization) Others Reserved (setting prohibited)
7	(Reserved)	Reserved bit. Write access is ignored.
6-4	ISFT_1[2:0]	Value of ISFT_1[2:0] 110 (Initial value) 101 Normal operation setting value (set to 101 at DRAM initialization) Others Reserved (setting prohibited)
3	(Reserved)	Reserved bit. Write access is ignored.
2-0	ISFT_0[2:0]	Value of ISFT_0[2:0] 110 (Initial value) 101 Normal operation setting value (set to 101 at DRAM initialization) Others Reserved (setting prohibited)

9.5.13. DRAM ODT SETTING register (DROS)

This register sets ODT control signal to DDR2 memory connected to external part.

Address		$F300_0000_{\rm H} + 60_{\rm H}$														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ODT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0

	Bit field	Description					
No.	Name	Description					
15-1		Reserved bits. Write access is ignored.					
0	ODT0	This is the value of external output pin, ODTCONT. Initial value is 0.					

9.5.14. IO buffer setting ODT1 (DRIBSODT1)

ODT related setting of IO buffer is set.

Address	$F300_0000_{\rm H} + 64_{\rm H}$															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	-	-	-	-	ZSELN	ODTONN	ZSELP	ODTONP	ZSEL	ODTON
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
15-6	(Reserved)	Reserved bits. Write access is ignored.
5	ZSELN	This becomes ZSELN value of IO buffer, and this is ODT resistance setting for DQSN. $ \begin{array}{c c} 0 & 150\Omega \text{ or } 100\Omega \text{ (initial value)} \\ \hline 1 & 75\Omega \text{ or } 50\Omega \end{array} $
4	ODTONN	This is ODT setting for DQS's IO, and controls ODTONN of the IO buffer. Initial value is 0.
		0 IO buffer's ODTON is always "0"
		1 This should be set to use ODT of IO buffer
		ODTON is set to off in the following case:To adjust OCD
3	ZSELP	This becomes ZSELP value of the IO buffer, and it is ODT resistance setting of DQSP's IO.
		0 150Ω or 100Ω (initial value)
		1 $75\Omega \text{ or } 50\Omega$
2	ODTONP	This is ODT setting of DQS's IO, and controls ODTONP of the IO buffer. Initial value is 0.
		0 IO buffer's ODTON is always "0"
		1 This should be set to use ODT of IO buffer
		ODTON is set to off in the following case:To adjust OCD
1	ZSEL	This is ZSEL value of the IO buffer that is ODT resistance of IO for DQ and DM.
		0 150Ω or 100Ω (initial value)
		1 75Ω or 50Ω
0	ODTON	This is ODT setting of IO for DQ and DM, and it controls ODTON of IO buffer. Initial value is 0.
		0 IO buffer's ODTON is always "0"
		1 This should be set to use ODT of IO buffer
		ODTON is set to off in the following case:To adjust OCD
L		

9.5.15. ODT auto bias adjust register (DROABA)

This register sets auto. adjustment related items of ODT bias.

Address	$F300_{0000_{\rm H}} + 70_{\rm H}$															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	-	OCO MPNPOL	OCO MPPPOL	-	-	-	IAV	SET	ODT	BIAS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	1	0	Х	Х	Х	0	0	0	0

	Bit field	Description								
No.	Name	Description								
15-9	(Reserved)	Reserved bits. Write access is ignored.								
8	OCOMPNPOL	This sets to detect either $0 \rightarrow 1$ or $1 \rightarrow 0$ of OCOCMPN value as valid at bias adjustment operation. $\begin{array}{c c} 0 & 0 \rightarrow 1 \text{ is valid} \\ \hline 1 & 1 \rightarrow 0 \text{ is valid (initial value)} \end{array}$								
7	OCOMPPPOL	This sets to detect either $0 \rightarrow 1$ or $1 \rightarrow 0$ of OCOCMPP value as valid at bias adjustment operation. $\begin{array}{c c} 0 & 0 \rightarrow 1 \text{ is valid (initial value)} \\ \hline 1 & 1 \rightarrow 0 \text{ is valid} \\ \end{array}$								
6-4	(Reserved)	Reserved bits. Write access is ignored.								
3-2	IAVSET	Average number of times of bias adjustment is specified. Adjustment is performed for predetermined number of times to output the average value to ODT of the I/O cell.								
		00 32 times (initial value)								
		01 64 times								
		10 128 times								
		11 256 times								
1-0	ODTBIAS	Operation of bias auto. adjustment circuit is set.								
		00 Auto. adjustment circuit of the bias is reset (initial value)								
		01 Reserved (setting prohibited)								
		10 Reserved (setting prohibited)								
		11 Auto. adjustment circuit of the bias is performed								

Remark: Each setting of bit2 - 8 should be set after setting ODTBIAS of bit 1 - 0 to "00" and stopping auto. adjustment operation.

9.5.16. ODT bias select register (DROBS)

This register sets ODT.

Address	$F300_0000_{\rm H} + 84_{\rm H}$															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	AUTO
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0

	Bit field	Description									
No.	Name	Description									
15-1	(Reserved)	Reserved bits. Write access is ignored.									
0	AUTO	This sets whether to use ODT auto. setting value mode. When it is set, the average value calculated with auto. adjustment of the bias is used to ODT value of the I/O cell.									
		0 The ODT auto. setting value mode is not used									
		1 The ODT auto. setting value mode is used									

9.5.17. OCD impedance setting Rrgister1 (DROISR1)

										-						
Address	$F300_{0000_{H}} + 98_{H}$															
Bit	15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0													0	
Name		DR	VN2			DR	DRVP2 DRVN1 DRVP1								VP1	
R/W		R/	′W		R/W				R/W				R/W			
Initial value	0	1	0	0	1	0	0	1	0	1	0	0	1	0	0	1

This register sets impedance adjustment value.

	Bit field	Description								
No.	Name	Description								
15-12	DRVN2	This register sets DRVN value of DQ[15:8], DQS1, and DM1								
11-8	DRVP2	This register sets DRVP value of DQ[15:8], DQS1, and DM1								
7-4	DRVN1	This register sets DRVN value of DQ[7:0], DQS0, and DM0								
3-0	DRVP1	This register sets DRVP value of DQ[7:0], DQS0, and DM0								

9.5.18. OCD impedance setting register2 (DROISR2)

This register sets impedance adjustment value.

Address		$F300_0000_{\rm H} + 9A_{\rm H}$															
Bit	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1											0				
Name	DRVN4 DRVP4									DRV	VN3		DRVP3				
R/W		R/	′W		R/W				R/W				R/W				
Initial value	0	1	0	0	1 0 0 1				0	1	0	0	1	0	0	1	

	Bit field	Description								
No.	Name	Description								
15-12	DRVN4	This register sets DRVN value of DQ[31:24], DQS3, and DM3								
11-8	DRVP4	This register sets DRVP value of DQ[31:24], DQS3, and DM3								
7-4	DRVN3	This register sets DRVN value of DQ[23:16], DQS2, and DM2								
3-0	DRVP3	This register sets DRVP value of DQ[23:16], DQS2, and DM2								

9.6. Operation

This section describes DDR2C operation.

9.6.1. DRAM initialization sequence

Initialization sequence at using DDR2SDRAM is described below.

Figure 9-2 shows initialization sequence at using DDR2SDRAM in time chart.

To proceed memory access to DDR2SDRAM, initialization sequence should be performed after power-on. During initialization sequence, DDRIF macro setting, DLL reset release in DDRIF macro, SDRAM initialization, OCD adjustment, ODT setting, and others are processed. Refer to "9.6.2 DRAM initialization procedure" for more detail of initialization sequence.

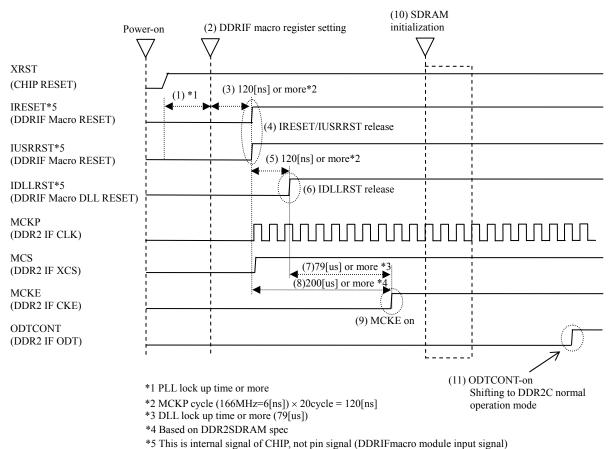
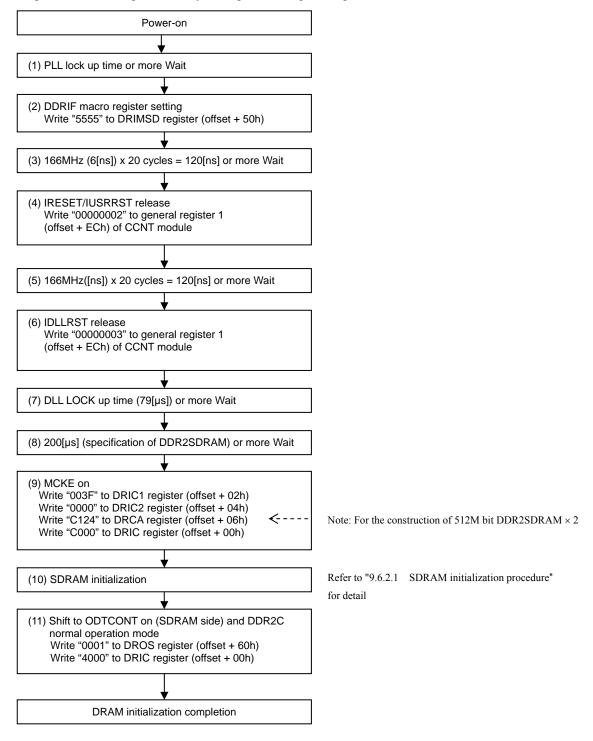
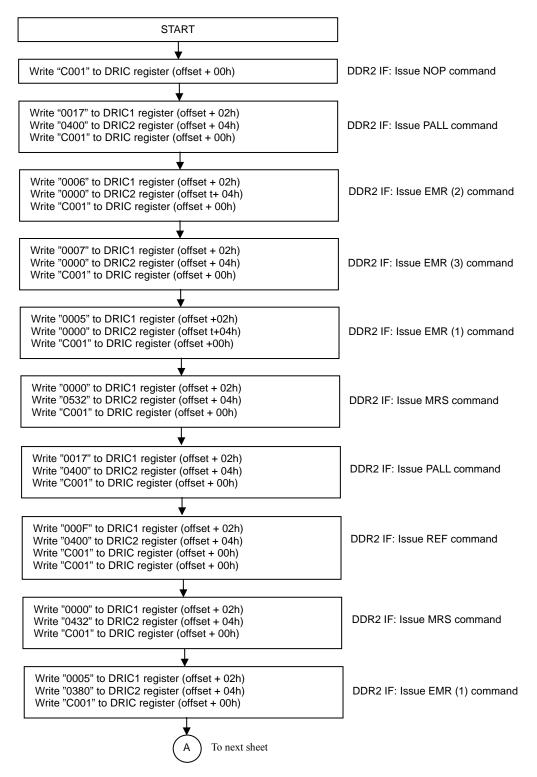


Figure 9-2 DDR2SDRAM initialization time chart

9.6.2. DRAM initialization procedure

The figure below is a whole flow of the register setting procedure for initialization sequence. Each number matches to the one in DDR2SDRAM initialization time chart shown in Figure 9-2. The procedure showing here is only the register setting relating to the DRAM initialization.




Figure 9-3 DRAM initialization procedure

9.6.2.1. SDRAM initialization procedure

The figure below is DDR2SDRAM initialization setting procedure at DRAM initialization.

DDR2SDRAM initialization sequence's command contents to be issued may change depending on the memory specification connected to this chip.

For each command's issuing contents and DDR2C command issuing timing, be sure to confirm memory spec in use to set properly.

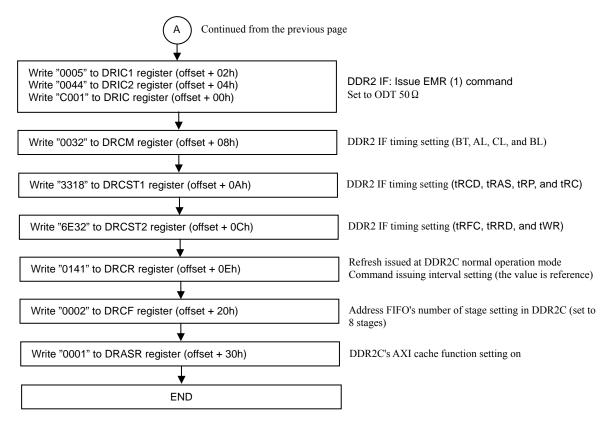


Figure 9-4 DDR2SDRAM initialization procedure

9.6.2.2. ODT setting procedure

The figure below is ODT adjustment setting procedure of SSTL_18 IO used for DDR2SDRAM IF. With proceeding ODT setting, DDR2C automatically adjusts ODT of SSTL_18 IO; moreover, auto. adjustment always operates during memory reading at normal operation. Pin for ODT adjustment is MDQ[31:0], MDM[3:0], MDQSP[3:0], and MDQSN[3:0].

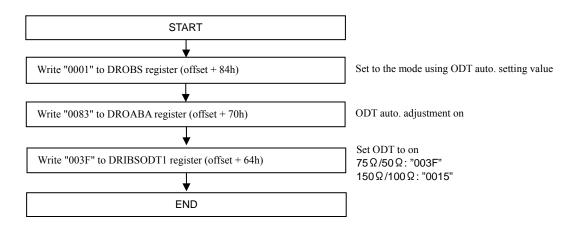


Figure 9-5 ODT adjustment setting procedure of SSTL_18 IO

10. Built-in SRAM

This chapter describes function and operation of built-in SRAM.

10.1. Outline

This SRAM equips 32KB of SRAM that enables storing instruction and data.

10.2. Feature

INTRAM has following features:

- Operation as bus slave of AMBA (AHB)
- 2pcs. of built-in SRAM are accessible from different 2 AHB masters simultaneously
- 32KB of SRAM is equipped to each built-in SRAM

10.3. Block diagram

Figure 10-1 shows block diagram of built-in SRAM.

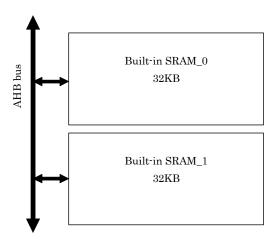


Figure 10-1 Block diagram of built-in SRAM

10.4. Supply clock

AHB clock is supplied to built-in SRAM. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

11. DMA controller (DMAC)

This chapter describes function and operation of DMA controller.

11.1. Outline

DMAC is 8 channel DMA controller.

11.2. Feature

DMAC in MB86R01 has following features:

- Compliant with AMBA v2.0
- 8 DMA channels
- DMA trigger
 - External transfer request (2ch of external DMA request and 6ch of I2S transmission/reception DMA request are available)
 - Peripheral transfer request (12 types of UART transmission/reception DMA request is selectable per channel)
 - Software request (start-up by register writing)
- Beat transfer

16 word FIFO shared by all channels

Corresponding to INCR, INCR 4/8/16, and WRAP 4/8/16.

- Transfer mode
 - Block transfer
 - Burst transfer
 - Demand transfer
- 4 bit block register and 16 bit count register are set by programming
- Corresponding to 8, 16, and 32 bit transfer widths
- Corresponding to increment and fixed addressing to source and destination
- Reload count, source address, and destination address register
- Issuing error interrupt and completion interrupt
- Displaying end code of DMA transfer
- Supporting source and destination protection
- Corresponding to fixed priority and rotation priority by hardware. In the fixed priority mode, channel 0 has the highest priority, and channel 7 has the lowest priority

11.3. Block diagram

Figure 11-1 shows block diagram of DMA controller.

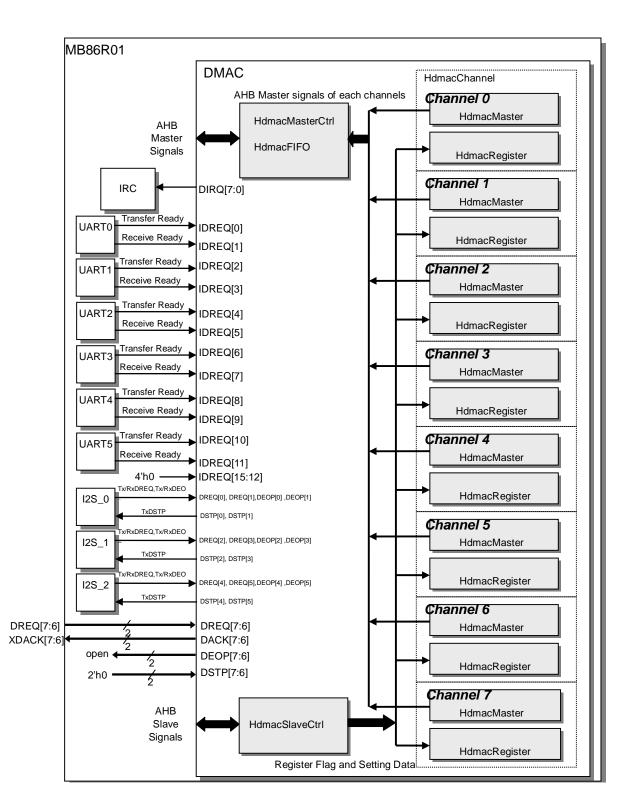


Figure 11-1 Block diagram of DMA controller

Function of individual block

Table 11-1 shows each block function of this module.

Block	Function
DMAC	Most significant module
HdmacMasterCtrl	Valid channel selector for priority controller and AHB master transaction
HdmacSlaveCtrl	DMAC AHB slave interface controller and valid channel selector I/F for AHB slave transaction
HdmacChannel	DMAC 1 channel module DMAC has 8 modules
HdmacMaster	DMAC AHB master main controller
HdmacRegister	DMAC DMA configuration register controller
HdmacFIFO	DMAC 16 word FIFO

Table 11-1Individual block function

11.4. Related pin

DMAC of MB86R01 has following DMA related pin which is common with other functions. To use the pin, external pin should be set to $MPX_MODE_1[1:0] = "LH"$ or $MPX_MODE_1[1:0] = "HL"$ to select DMA related pin.

Table 11-2DMAC related pin

Pin	Direction	Qty.	Description
DREQ[6] DREQ[7]	Ι		DMA request pin which is connected as channel 7 of DMAC and channel 6 of external DREQ signal.
XDACK[6] XDACK[7]	О		DMA acknowledge pin which is connected as channel 7 of DMAC and channel 6 of external DACK signal.

11.5. Supply clock

AHB clock is supplied to DMA controller. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

11.6. Register

This section describes DMAC register.

11.6.1. Register list

DMAC control related register is shown below.

Module	Address	Register	Function
DMAC common	FFFD0000(h)	DMACR	DMAC configuration register
	FFFD0004(h) FFFD000F(h)	Reserved	
DMAC ch0	FFFD0010(h)	DMACA0	DMAC0 configuration A register
	FFFD0014(h)	DMACB0	DMAC0 configuration B register
	FFFD0018(h)	DMACSA0	DMAC0 source address register
	FFFD001C(h)	DMACDA0	DMAC0 Destination address register
DMAC ch1	FFFD0020(h)	DMACA1	DMAC1 configuration A register
	FFFD0024(h)	DMACB1	DMAC1 configuration B register
	FFFD0028(h)	DMACSA1	DMAC1 source address register
	FFFD002C(h)	DMACDA1	DMAC1 Destination address register
DMAC ch2	FFFD0030(h)	DMACA2	DMAC2 configuration A register
	FFFD0034(h)	DMACB2	DMAC2 configuration B register
	FFFD0038(h)	DMACSA2	DMAC2 source address register
	FFFD003C(h)	DMACDA2	DMAC2 Destination address register
DMAC ch3	FFFD0040(h)	DMACA3	DMAC3 configuration A register
	FFFD0044(h)	DMACB3	DMAC3 configuration B register
	FFFD0048(h)	DMACSA3	DMAC3 source address register
	FFFD004C(h)	DMACDA3	DMAC3 Destination address register
DMAC ch4	FFFD0050(h)	DMACA4	DMAC4 configuration A register
	FFFD0054(h)	DMACB4	DMAC4 configuration B register
	FFFD0058(h)	DMACSA4	DMAC4 source address register
	FFFD005C(h)	DMACDA4	DMAC4 Destination address register
DMAC ch5	FFFD0060(h)	DMACA5	DMAC5 configuration A register
	FFFD0064(h)	DMACB5	DMAC5 configuration B register
	FFFD0068(h)	DMACSA5	DMAC5 source address register
	FFFD006C(h)	DMACDA5	DMAC5 Destination address register
DMAC ch6	FFFD0070(h)	DMACA6	DMAC6 configuration A register
	FFFD0074(h)	DMACB6	DMAC6 configuration B register
	FFFD0078(h)	DMACSA6	DMAC6 source address register
	FFFD007C(h)	DMACDA6	DMAC6 Destination address register
DMAC ch7	FFFD0080(h)	DMACA7	DMAC7 configuration A register
	FFFD0084(h)	DMACB7	DMAC7 configuration B register
	FFFD0088(h)	DMACSA7	DMAC7 source address register
	FFFD008C(h)	DMACDA7	DMAC7 Destination address register

 Table 11-3
 DMAC register list

Notice for register setting

Note followings for DMAC register setting.

- DMACR, DMACA, DMACB, DMACSA, and DMACDA registers are accessible in byte, half-word, and word size.
- Do not set DMAC register address to DMACSA and DMACDA registers.
- Do not change setting register's channel during DMA transfer except DE/DH bits of DMACR and EB/PB bits of DMACA.

Description format of register

Following format is used for description of register's each bit in "11.6.2 DMA configuration register (DMACR)" to "11.6.6 DMAC destination address register (DMACDAx)".

Address	Base address + Offset															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

11.6.2. DMA configuration register (DMACR)

Address		$FFFD_{0000} + 00(h)$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	DE	DS	-	PR		DH[[3:0]		erved)							
R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								(Rese	erved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31	DE (DMA	Transfer is controlled for all DMA channels.
	Enable)	 All DMA channels are disabled and DMA transfer is not performed until "1" is set to this bit If the value is cleared to "0" during the transfer, DMA is stopped at transmission gap for the channel in transfer
		1 DMA transfer starts according to the register setting of each channel
		 [Transfer gap] The transfer gap is that DMAC de-asserts bus request (HBUSREQ) to the arbiter during DMA transfer (about 4 clocks) by DMAC. Its occurrence is different by transfer mode shown below. Block transfer: Transfer gap occurs at BC = 0 (after completing transfer in BC unit) Burst transfer: There is no transfer gap. Demand transfer: Transfer gap occurs at TC = TC - 1 (after completing 1 DMA transfer), or at transfer request negotiation This bit can be used to reset all channels of Configuration register at a time during DMA transfer.
30	DS (DMA Stop)	This shows all channels of DMA transfer is stop.
		0 Release of disable/halt setting 1 DMA transfer stop of all channels by disable/halt setting This bit is set to "1" during DMA transfer by either of following operations: • DMACR.DE bit is cleared to "0" (all channels are disabled) • Value other than 4'h0 is set to DMACR.DH bit (all channels are halt) When the state of disable/halt is cleared, DMAC clears DS bit to "0". This bit is able to use for confirmation of transfer stop when DMAC stops transfer of all channels by disable/halt setting.
29	(Reserved)	Reserved bits. Write access is ignored. Read value of this bit is always "0".
28	PR (Priority Rotation)	Prioritization procedure of DMA channel is controlled. 0 "Fixed" Priority order: Ch0 > Ch1 > Ch2 > Ch3 > Ch4 > Ch5 > Ch6 > Ch7 1 "Rotation" Priority order is rotated
		Channel switch occurs by the timing of transfer gap. Refer to DE bit description for the transfer gap.

	Bit field		Description							
No.	Name		Description							
27- 24	DH[3:0] (DMA Halt)	until 4'b0000 is set. If the value other tha description for the tra	r than 4'b0000 is set to this bit, all DMA channels stop and DMA is not transferred n 4'b0000 is set during DMA transfer, it is stopped at transfer gap. Refer to DE bit							
		0000	Stop release							
		Other than 0000	Stop of all channels							
23-0	(Reserved)	Reserved bits. Write access is ignored. Read value of this bit is always "0".								

Address	ch0 :]	FFFD_	0000+1	l0 (h)	ch1 :]	FFFD_	0000+2	20 (h)	ch2:	FFFD_	0000+.	30 (h)	ch3	FFFD	_0000+	-40 (h)
Autress	ch4 :]	FFFD_	0000+5	50 (h)	ch5 :1	FFFD_	0000+6	50 (h)	ch6 :	FFFD_	0000+7	70 (h)	ch7 :	FFFD	_0000+	-80 (h)
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	EB	PB	ST			IS[4:0]				BT[3:0]			BC[3:0]	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								TC[15:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

11.6.3. DMA configuration A register (DMACAx)

	Bit field	Description							
No.	Name	Description							
31	EB (Enable Bit)	This bit is used to control DMA channel transfer. When "1" is set to this bit, channel waits for the trigger to start DMA transfer (DMACR/DE bits should be set to "1" beforehand.)							
		DMAC sets "0" to this bit after DMA transfer, then this channel is disabled and DMA transfer is not performed until "1" is set to this bit. If "0" is set to this bit during DMA transfer, DMA stops at transfer gap which is regarded as forcible termination. Refer to DMACR/DE bits description for transfer gap.							
		This bit is able to use for resetting each configuration register of the channel during DMA transfer.							
		0 This channel is disabled (initial value)							
		1 This channel is enabled							
30	PB (Pause Bit)	This bit is used to discontinue DMA channel transfer. When "1" is set to this bit, this channel stops the transfer, and it is not performed until this bit is cleared. If "1" is set to this bit during DMA transfer, DMA stops at transfer gap. Refer to DMACR/DE bits description for transfer gap. When "1" is set to this bit before receiving transfer request to acquire bus right, DMAC is immediately paused; in this case, DMAC does not hold transfer request during the pause. When "0" is set to this bit during DMA transfer is in pause, it is cleared and DMAC waits for new transfer request. This bit is able to be used to stop DMA transfer without resetting each configuration register of the channel. 0 Initial value							
		1 This channel is stopped							
29	ST (Software Trigger)	This bit is used to generate software trigger. When "1" is set to this bit, DMA transfer starts as software request is received. After the transfer, DMAC sets "0" to this bit. If "0" is set to this bit during DMA transfer by software request, it stops at transfer gap.							
		0 Initial value							
		1 Software request							

No. 28-24	Name IS[4:0] (Input Select)	DMA transfer tri DMA transfer tri DMA transfer tri External request	Description to select trigger for DMA transfer. igger is software request (ST = 1): Set 5'b00000 to IS bit igger is external request (DREQ): Set 5'b01110 or 5'b01111 to IS bit igger is peripheral request (IDREQ[15:0]): Set 5'b1xxxx to IS bit (DREQ[7:0]) is allocated into each channel, and peripheral request is allocated into all channels. Thus, peripheral request can be selected from a	
		DMA transfer tri DMA transfer tri DMA transfer tri External request (IDREQ[15:0]) i	igger is software request (ST = 1): Set 5'b00000 to IS bit igger is external request (DREQ): Set 5'b01110 or 5'b01111 to IS bit igger is peripheral request (IDREQ[15:0]): Set 5'b1xxxx to IS bit (DREQ[7:0]) is allocated into each channel, and peripheral request	
				ıll
		IS[4:0]	Function	
		0(h)	Software request	
		1(h)-B(h)	Invalid	
		E(h)	DREQ "H" active level or rising edge	
		F(h)	DREQ "L" active level or falling edge	
		10(h)	IDREQ 0 "H" active level or rising edge	
		11(h)	IDREQ 1 "H" active level or rising edge	
		12(h)	IDREQ 2 "H" active level or rising edge	
		13(h)	IDREQ 3 "H" active level or rising edge	
		14(h)	IDREQ 4 "H" active level or rising edge	
		15(h)	IDREQ 5 "H" active level or rising edge	
		16(h)	IDREQ 6 "H" active level or rising edge	
		17(h)	IDREQ 7 "H" active level or rising edge	
		18(h)	IDREQ 8 "H" active level or rising edge	
		19(h)	IDREQ 9 "H" active level or rising edge	
		1A(h)	IDREQ 10 "H" active level or rising edge	
		1B(h)	IDREQ 11 "H" active level or rising edge	
		1C(h)	IDREQ 12 "H" active level or rising edge	
		1D(h)	IDREQ 13 "H" active level or rising edge	
		1E(h)	IDREQ 14 "H" active level or rising edge	
		1F(h)	IDREQ 15 "H" active level or rising edge	
		Transfer mode is[Note]These bits muIf these bits a	s block transfer or burst transfer: Rising edge is selected. s demand transfer: "H" active level is selected. ist not be the same as other channels' are changed at asserting DREQ/IDREQ, DMAC regards IS bit change as alling edge) detection.	edge

1	Bit field	Description								
No.	Name		Description							
23-20	BT[3:0] (Beat Type)	These bits are used to select beat transfer on AHB. When these bits are set to Normal or Single, single source access and single destination acce alternately performed. If these bits are set to INCR* or WRAP*, contiguous source access and contiguous destination access are alternately performed. DMAC has 64 byte of FIFO that is shared in all channels. FIFO is used for INCR* and W DMA transfer. Refer to the AMBA specifications (v2.0) for INCR* and WRAP*. When INCR (undefined length burst) is set, the burst length is specified by the BC bit.								
		BT[3:0]	Function]						
		0(h)	Normal (same as Single) (Initial value)							
		1(h)-7(h)	Invalid	-						
		8(h)	Single (same as Normal)							
		9(h)	INCR							
		A(h)	WRAP4							
		B(h)	INCR4							
		C(h)	WRAP8							
		D(h)	INCR8	-						
		E(h)	WRAP16	-						
		F(h)	INCR16							
		WRAP*) and un	/MS are set to block transfer and burst transfe defined length burst (INCR) are valid. MS are set to demand transfer, BT should be set to							
19-16	BC[3:0] (Block Count)	demand transfer, These bits are va beat (fixed lengt read during DM.	sed to specify number of block for block/burst tra be sure to set 4'b0000 to BC. Max. block quanti alid when beat transfer type is Normal, Single, or h burst and lap) are set, these bits are ignored. A transfer. After single source access and single ally BC bit is decremented for 1.	ty is 16 (Fh.) r INCR. When other types of In addition, they are able to be						
			ettable even beat type bit (BT[3:0]) is INCR, h ansfer is always 4'h0 in INCR DMA transfer so g the transfer.							
		After DMA trans	afer is completed properly, DMAC sets 4'b0000 to	these bits.						
		BC[3:0]	Function]						
		x(h)	Number of block (initial value: 4'b0000)]						
15-0	TC[15:0] (Transfer Count)		sed to specify number of block/burst/demand tran .) Any kind of bit type is valid for BT.	sfer. Max. number of transfer						
		properly comple Normal or Sing decremented for when 4 consect INCR4's TC bit	readable during DMA transfer. After BC become ted, normally TC bit is decremented for 1 in the le.) In other beat transfer modes (INCR, INC 1 after completing consecutive source/destination utive source accesses and 4 consecutive destin is decremented for 1.)	Normal or Single mode (BT = CR*, and WRAP*), TC bit is access operation (for example, ation accesses are completed,						
		TC[2.0]	Function	1						
		TC[3:0] x(h)	Function Number of transfer (initial value: 16'h0000)	4						
		<u></u>	Transer of dunsier (initial value, 10 10000)	J						

11.6.4.	DMA configuration	B register	(DMACBx)
---------	-------------------	-------------------	----------

Address		_	0000+1 0000+5				0000+2 0000+0	~ /		FFFD_ FFFD_	-	· · /				+44 (h) +84 (h)
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	TT[1:0]	MS	1:0]	TW	[1:0]	FS	FD	RC	RS	RD	EI	CI		SS[2:0]	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R /W0	R/W0	R/W0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		SP[3:0]			DP[3:0]					(Reserved)					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description								
No.	Name									
31-30	TT[1:0] (Transfer Type)	These bits are use DMAC.	ed to specify transfer type. Currently, only 2 cyc	ele transfer mode is available for						
		TT[1:0]	Function							
		0(h)	2 cycle transfer (initial value)							
		Other than 0(h)	Reserved							
29-28	MS[1:0] (Mode Select)	These bits are use	ed to select transfer mode.							
		MS[1:0]	Function							
		0(h)	Block transmission mode (initial value)							
		1(h)	Burst transmission mode							
		2(h)	Demand transmission mode							
		3(h)	Reserved							
		TW[1:0] 0(h) 1(h) 2(h) 3(h)	C issues this value on AHB. Function Byte (initial value) Half-word Word Reserved							
25	FS (Fixed Source)		o fix source address. s needs to be added after each transfer, "0" must b	e set to this bit.						
		FS	Function							
		0(h)	Source address is incremented (initial value)							
		1(h)	Source address is fixed							
24	FD (Fixed Destination)		o fix destination address. s needs to be added after each transfer, "0" must b	e set to this bit.						
		FD	Function							
		0(h)	Destination address is incremented (initial value))						
		1(h)	The destination address is fixed							

	Bit field		Duralitie								
No.	Name	Description									
23	RC (Reload Count)	transfer (DMAC	o control reload function for number of block (DMACA/BC bits) and number of A/TC bits.) A/TC bits.) to this bit, DMACA/BC and DMACA/TC are set to the initial value after DMA								
		RC	Function								
		0(h)	Reload function for number of transfer is disabled (initial value)								
		1(h)	Reload function for number of transfer is enabled								
22	RS (Reload Source)	This bit is used to "1" is set to this b "0" is set to this b									
		RS	Function								
		0(h)	Reload function of source address is disabled (initial value)								
		1(h)	Reload function of source address is enabled								
21	RD (Reload Destination) EI (Error Interrupt)	 "1" is set to this b "0" is set to this b RD 0(h) Reloa 1(h) Reloa This bit is used to When this bit is s Address overf 	bit: DMAC sets the next destination address to DMACDA after DMA transfer Function d function of destination address is disabled (initial value) d function of destination address is enabled o control issuing interrupt (DIRQ) caused by error. et to "1", error interrupt is issued by the following transfer errors. low								
		 Transfer stop 1 Source access Destination ac 									
			interrupt issue is disabled (initial value)								
			interrupt issue is enabled								
			•								
19	CI (Completion Interrupt)		o control issuing interrupt (DIRQ) caused by completion of transfer. Let to "1", completion interrupt is issued after DMA is transferred properly.								
		СІ	Function								
		0(h) Comp	oletion interrupt is disabled (initial value)								
		1(h) Comp	etion interrupt is enabled								

Bit field		Description											
No.	Name	1	Description These bits are used to show end code of DMA transfer which is shown below.										
18-16	SS[2:0] (Stop Status)	These bits	These bits are used to show end code of DMA transfer which is shown below. These bits are also used to release interrupt (DIRQ) which is performed by writing 3'b000 to thosts when interrupt becomes error or it is issued by normal termination.										
		SS	Function Status type										
		0(h)	nitial value None										
		1(h)	Address overflow	Error									
		2(h)	Transfer stop request	Error									
		3(h)	Source access error	Error									
		4(h)	Destination access error	Error									
		5(h)	Normal termination	End									
		6(h)	Reserved										
		7(h)	DMA discontinuance	None									
15-12	SP[3:0] (Source Protection)	These bits HPROT a	Reset Clear by 3'b000 writing Address overflow Demand stop Source access error Destination access error w priority the are used to control source protection. at source access issues this value to AHB; however, it is not performed if source target requip protection function.										
		SP	Function										
		x(h)	Protection code (initial value: 4'b0000.)										
11-8	DP[3:0] (Destination Protection)	HPROT a	These bits are used to control destination protection. HPROT at destination access issues this value to AHB; however, it is not performed if source arget does not equip protection function.										
		DP	Function										
		x(h)	Protection code (initial value: 4'b0000.)										
7-0	(Reserved)	Reserved Write acc	bits. ess is ignored. Read value of this bit is alw	ays "0".									

11.6.5.	DMAC source address register (DMACSAx)
---------	--

Address		FFFD_ FFFD_			ch1 :] ch5 :]			~ /			0000+3 0000+7				0000+ 0000+	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		DMACSA[31:16]														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		DMACSA[15:0]														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description									
No.	Name		Description								
31-0	(DMAC Source Address)	during DMA transt When fixed addres the transfer width (After the DMA tra [Note]	d to specify source address to start DMA transfer, and they are able to be read fer. s function (DMACB/FS) is disabled, these bits are incremented according to (DMACB/TB) after completing source address properly. nsfer, DMAC sets the next source address to these bits. et DMAC register address to DMACSA.								
		DMACSA	Function								
		x(h)	Source address to start DMA transfer (Initial value: 32'h0000000)								

Address	ch0 : FFFD0000+1C (h) ch4 : FFFD0000+5C (h)			· · ·		ch2 : FFFD0000+3C (h) ch6 : FFFD0000+7C (h)			ch3 : FFFD0000+4C (h) ch7 : FFFD0000+8C (h)							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DMACD	A[31:16]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DMACI	DA[15:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit field		Description				
No.	Name	Description				
31-0	(DMAC Destination Address)	read during DMA t When fixed addres the transfer width (After DMA transfe [Note]	d to specify destination address to start DMA transfer, and they are able to be ransfer. ss function (DMACB/FD) is disabled, these bits are incremented according to DMACB/TB) after completing destination address properly. r, DMAC sets the next destination address to these bits. et DMAC register address to DMACDA.			
		DMACDA	Function			
		x(h)	Destination address to start DMA transfer (Initial value: 32'h00000000)			
			·			

11.7. Operation

This section describes operation of DMAC.

11.7.1. Transfer mode

DMAC has 3 types of transfer modes, and they are set with DMACB.MS[1:0].

11.7.1.1. Block transfer

Operation

In the block transfer mode, DMA transfer specified by number of block (DMACA/BC) is executed by 1 transfer request. When number of transfer (DMACA/TC) is set to other values than "0", TC is decremented for 1 after completing DMA transfer of BC. After the last transfer (BC is 4'h0 and TC is 16'h0000), DMA transfer is completed.

Transfer gap

After completing BC transfer, DMAC negates bus request to arbiter for the moment in the block transfer mode. This operation prevents DMAC from occupying the bus.

Transfer gap is able to be used to reflect register setting (e.g. disable/interruption setting) to DMAC during DMA transfer.

Transfer request

Software requirement, external request (DREQ), and peripheral request (IDREQ) are valid in this mode.

- Software request
 Set "1" to DMACA/ST and set 5'b00000 to DMACA/IS
- External request Set "0" to DMACA/ST, and set 5'b01110 (rising edge of transfer request) or 5'b01111 (falling edge of transfer request) to DMACA/IS
- Peripheral request Set "0" to DMACA/ST, and set 5'b1**** (rising edge of transfer request) to DMACA/IS

When external request or peripheral request is selected, DMAC detects transfer request edge. When BC's DMA transfer is executed by either of those requests, DMAC is unable to detect the next transfer; however, it is able to detect the next transfer request after BC's DMA transfer is completed.

Restrictions

When DMA transfer is performed by external (DREQ) or peripheral (IDREQ) request, there are restrictions for external and peripheral signal pins.

1. DREQ/IDREQ

DREQ/IDREQ must be asserted at least 2 cycles of AHB clock (HCLK).

There is no restriction for timing of negating DREQ/IDREQ.

After asserting DACK/IDACK, DMAC is able to accept new transfer request (edge of DREQ/IDREQ) for the next DMA transfer.

2. DACK/IDACK

After DMAC transfers data to the destination address, DACK/IDACK are asserted during 1 cycle of AHB clock (HCLK). When access to the destination is proceeded properly, this signal is asserted. If destination issues error, retry, or split responses at AHB, it is not asserted.

In the block transfer mode, these signals indicate DMAC properly performs destination access.

3. DEOP/IDEOP

Basically, DEOP/IDEOP asserted for 1 AHB clock (HCLK) cycle when DMAC terminates DMA transfer properly or abnormally. Abnormal DMA transfer includes following cases:

- Forced termination by DSTP/IDSTP
- Forced termination by setting 1'b0 to DMACA/EB
- Receiving error response from source/destination
- 4. DSTP/IDSTP

DSTP/IDSTP are used to forcibly terminate DMA transfer, and asserting them during the transfer is valid (it is also valid to assert DSTP/IDSTP while DMA is not transferred due to transfer gap and interruption function.)

When these signals are used to forcibly terminate DMA transfer, they are not asserted until DEOP/IDEOP are asserted.

5. Exceptional operation of DEOP/IDEOP

When DSTP/IDSTP are asserted immediately after asserting DREQ/DSTP, DMAC may request bus to execute IDLE transfer. In this case, DMAC may assert DEOP/IDEOP for 2 cycles or more of AHB clock (HCLK.)

The asserting period of DEOP/IDEOP depends on number of previous master transfer cycle. Figure 11-2 shows example of this exceptional operation.

DREQ					
DACK					
DEOP					
DSTP					
HCLK					
HBUSREQM(HDMAC)					
HGRANTM(HDM	IAC)				
HMASTER	Other Master HDMAC X Other Master				
Control	NONSEQ or SEQ READ or WRITE X IDLE X NONSEQ or SEQ READ or WRITE				
HREADY					
HRESP	ОК				

Figure 11-2 Example of exceptional operation for DEOP/IDEOP

When DMA transfer is performed by software reset, DREQ/IDREQ, DACK/IDACK, DEOP/IDEOP, and DSTP/IDSTP are not valid.

Timing chart

Figure 11-3 shows block transfer in timing chart.

External trigger DREQ	
DACK	
DEOP	□
DSTP	
Software trigger	
DMACA[31:24	4] 0x00 X 0xA0 X 0x00
HBUSREQ	Break of transfer
HGRANT	
HCLK	
HMASTER	CPU (HDMAC) CPU (HDMAC) CPU
HTRANS	<u> </u>
HADDR	
HWRITE	
Control	
HWDATA	Data Data Data
HRDATA	X Data X Data X Data X Data X
HREADY	
HRESP	ОК
DMACA[19:16	6] 0x0 / 0x1 / 0x0 / 0x1 / 0x0
BC DMACA[15:0]	0x0 (0x1) 0x0
DMACSA	SAO SA1 SA2 SA3 SA4
DMACDA	DA0 (DA1(DA2 (DA3(DA4

Figure 11-3 Block transfer (for BC = 0x1 and TC = 0x1)

11.7.1.2. Burst transfer

Operation

In the burst transfer mode, DMA transfer is executed for number of block multiplied by number of transfer (DMACA/BC \times DMACA/TC) with 1 request.

When number of transfer (DMACA/TC) is set to other values than "0", TC is decremented for 1 after completing DMA transfer. After the last transfer (BC is 4'h0 and TC is 16'h0000), DMA transfer is completed.

Transfer gap

After completing DMA transfer, DMAC negates bus request to arbiter that transfer gap does not occur in the burst transfer mode.

Register setting change during DMA transfer (e.g. disable/interruption setting) is reflected after completing DMA transfer.

Transfer request

Software request, external (DREQ), and peripheral (IDREQ) requests are valid in this mode.

• Software request

Set "1" to DMACA/ST and set 5'b00000 to DMACA/IS

- External request Set "0" to DMACA/ST, and set 5'b01110 (rising edge of transfer request) or 5'b01111 (falling edge of transfer request) to DMACA/IS
- Peripheral request Set "0" to DMACA/ST, and set 5'b1**** (rising edge of transfer request) to DMACA/IS

When external request or peripheral request is selected, DMAC detects transfer request edge. When DMA transfer of BC \times TC is executed by either of those requests, DMAC is unable to detect the next transfer; however, it is able to detect the next transfer request after DMA transfer of BC \times TC is completed.

Restrictions

When DMA transfer is performed by external (DREQ) and peripheral (IDREQ) requests, there are some restrictions for external and peripheral signal pins.

1. DREQ/IDREQ

DREQ/IDREQ must be asserted at least 2 cycles of AHB clock (HCLK.) There is no restriction for timing of negating DREQ/IDREQ. After completing DMA transfer in BC × TC and asserting DACK/IDACK and DEOP/IDEOP, new transfer request (edge of DREQ/IDREQ) is able to be accepted for the next DMA transfer.

2. DACK/IDACK

After DMAC transfers data to the destination address, DACK/IDACK are asserted for 1 cycle of AHB clock (HCLK.) When access to the destination is proceeded properly, this signal is asserted. If destination issues error, retry, or split responses at AHB, this signal is not asserted.

In the burst transfer mode, these signals indicate that DMAC performs destination access properly.

3. DEOP/IDEOP

Basically, DEOP/IDEOP are asserted for 1 AHB clock (HCLK) cycle when DMAC ends DMA transfer properly or abnormally. Abnormal DMA transfer includes following cases:

- Forced termination by DSTP/IDSTP
- Forced termination by setting 1'b0 to DMACA/EB
- Receiving error response from source/destination

4. DSTP/IDSTP

DSTP/IDSTP are used to forcibly terminate DMA transfer, and asserting them while the transfer is valid (it is also valid to assert DSTP/IDSTP while DMA is not transferred due to transfer gap and interruption function.)

When these signals are used to forcibly terminate DMA transfer, they are not asserted until DEOP/IDEOP are asserted.

5. Exceptional operation of DEOP/IDEOP

When DSTP/IDSTP are asserted immediately after DREQ/DSTP are asserted, DMAC may request bus to execute IDLE transfer. In this case, DMAC may assert DEOP/IDEOP for 2 cycles or more of AHB clock (HCLK.)

The asserting period of DEOP/IDEOP depends on number of previous master transfer cycle. Figure 11-4 shows example of this exceptional operation.

DREQ					
DACK					
DEOP					
DSTP					
HCLK					
HBUSREQM(HDMAC)					
HGRANTM(HDM	MAC)				
HMASTER	Other Master XHDMAC X Other Master				
Control	NOSEQ or SEQ READ or WRITE X IDLE READ X NOSEQ or SEQ READ or WRITE				
HREADY					
HRESP	ОК				

Figure 11-4 Example of exceptional operation of DEOP/IDEOP

When DMA transfer is performed by software reset, DREQ/IDREQ, DACK/IDACK, DEOP/IDEOP, and DSTP/IDSTP are not valid.

Timing chart

Figure 11-5 shows burst transfer in timing chart.

External trigger DREQ		
DACK		Π
DEOP		Π
DSTP		
Software trigger DMACA[31:24	4] 0x00) 0xA0)0x00
HBUSREQ		
HGRANT		
HCLK		
HMASTER	CPU A HDMAC	CPU
HTRANS	<u> </u>	
HADDR	(SA) DA) SA (DA (SA) DA) SA) DA	
HWRITE		
Control		(
HWDATA	Data Data Data Data	(
HRDATA) Data) Data) Data) Data	
HREADY		
HRESP	OK	
DMACA[19:16 BC	6] <u>0x0 (0x1 (0x0 (0x1)</u>	0x0
DMACA[15:0] TC	<u>0x0 χ 0x1 χ</u>	0x0

Figure 11-5 Burst transmission (for BC = 0x1 and TC = 0x1)

11.7.1.3. Demand transfer

Operation

In the demand transfer mode, DMA transfer is executed for 1 time transfer when transfer request is asserted, and number of transfer is set to DMACA/TC registers. In this case, DMACA/BC is set to "0". In this mode, DMACA/BC values are ignored. DMACA/TC are decremented for 1 after completing DMA transfer. Therefore DMA transfer ends after the last transfer (TC is16'h0000) is completed.

Transfer gap

After completing 1 transfer, DMAC negates bus request to arbiter for the moment even though transfer request is asserted. This operation prevents DMAC from occupying bus. Transfer gap is able to be used to reflect register setting (e.g. disable/interruption setting) to DMAC during DMA transfer.

Transfer request

External (DREQ) and peripheral (IDREQ) requests are valid in the demand transfer mode; however, software request setting is prohibited in this mode.

- External request Set "0" to DMACA/ST, and set 5'b01110 (H level of transfer request) or 5'b01111 (L level of transfer request) to DMACA/IS
- Peripheral request Set "0" to DMACA/ST, and set 5'b1**** (H level of transfer request) to DMACA/IS

When external request or peripheral request is selected, DMAC detects transfer request level.

Restrictions

When DMA transfer is performed by external (DREQ) or peripheral (IDREQ) request, there are some restrictions for the external and peripheral signal pins.

1. DREQ/IDREQ

DREQ/IDREQ must be asserted until DACK/IDACK are asserted. After they are asserted, DREQ/IDREQ need to be negated within AHB clock (HCLK) cycle of "source access cycle + destination access cycle -1".

When negation timing of DREQ/IDREQ is sent against to the restrictions, DMAC may start the next transfer operation.

After completing 1 DMATE transfer and DACK/IDACK are asserted, DMAC is able to receive new transfer request (DREQ/IDREQ level) for the next DMA transfer after the condition of negating time indicated above.

2. DACK/IDACK

After DMAC transfers control signal to the source address, DACK/IDACK are asserted during 1 cycle of AHB clock (HCLK.) In the demand transfer mode, these signals indicate that DMAC receives demand transfer request.

3. DEOP/IDEOP

Basically, DEOP/IDEOP are asserted for 1 AHB clock (HCLK) cycle when DMAC ends DMA transfer properly or abnormally. Abnormal DMA transfer includes following cases:

- Forced termination by DSTP/IDSTP
- Forced termination by setting 1'b0 to DMACA/EB
- Receiving error response from source/destination

4. DSTP/IDSPT

DSTP/IDSTP are used to forcibly terminate DMA transfer. Asserting them during DMA transfer is valid (it is also valid to assert DSTP/IDSTP while DMA is not transferred due to transfer gap and interrupt function.)

When these signals are used to forcibly terminate DMA transfer, they are not asserted until DEOP/IDEOP are asserted.

5. Exceptional operation of DEOP/IDEOP

When DSTP/IDSTP are asserted immediately after DREQ/DSTP are asserted, DMAC may request bus to execute IDLE transfer. In this case, DMAC may assert DEOP/IDEOP for 2 cycles or more of AHB clock (HCLK.)

The asserting period of DEOP/IDEOP depends on number of previous master transfer cycle. Figure 11-6 shows example of this exceptional operation.

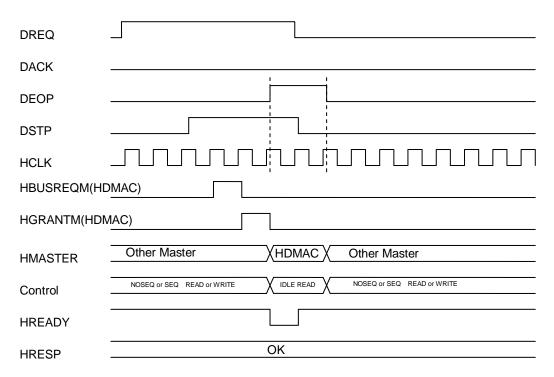


Figure 11-6 Example of exceptional operation of DEOP/IDEOP

Timing chart

Figure 11-7 shows demand transfer in timing chart.

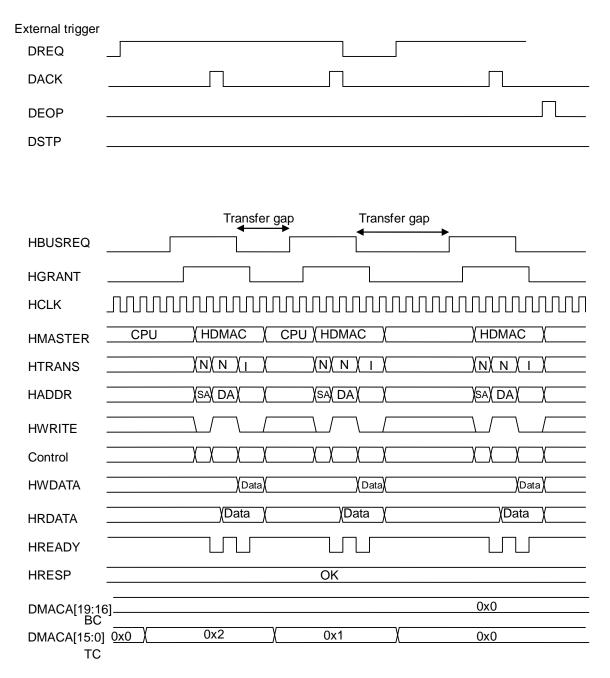


Figure 11-7 Demand transfer (for BC = 0x0 (should be 0) and TC = 0x2)

11.7.2. Beat transfer

DMAC supports beat transfer which means, in this case, increment/lap burst of the AMBA standard. DMAC has 64 byte FIFO shared in all channels, and enables sequential source access and destination access. The beat transfer type is set by DMACA/BT bits.

Correlation to DMACA/BT and AHB of HBURST is shown below.

DMACA/BT Beat transfer type		HBURST	DMACA/MS (mode select)			
			Block	Burst	Demand	
4'b0000	Normal	Single	OK	OK	OK	
4'b1000	Single	Single	ОК	OK	OK	
4'b1001	INCR	INCR	OK	OK	NG	
4'b1010	WRAP4	WRAP4	ОК	OK	NG	
4'b1011	INCR4	INCR4	ОК	OK	NG	
4'b1100	WRAP8	WRAP8	OK	OK	NG	
4'b1101	INCR8	INCR8	ОК	OK	NG	
4'b1110	WRAP16	WRAP16	OK	OK	NG	
4'b1111	INCR16	INCR16	OK	OK	NG	

Table 11-4 DMACA/BT and HBURST

In the demand transfer, increment/lap burst (INCR* and WRAP*) is unsupported.

11.7.2.1. Normal and Single transfer

Normal and Single transfer methods are the same. Single source access and single destination access are executed alternately as shown in Figure 11-2 and Figure 11-3.

11.7.2.2. Increment and lap transfer

When increment beat transfer (INCR, INCR4, INCR8 and INCR16) or lap beat transfer (WRAP4, WRAP8, and WRAP16) is set to DMACA/BT, sequential source access and destination access are executed by using 64 byte FIFO of DMAC.

For the case of INCR4 (DMACA/BT = 4'b1011), DMAC performs 4 sequential source accesses. Output data from the source is stored in FIFO of DMAC, then the data is driven to destination in sequence.

HBUSREQ	
HGRANT	
HCLK	
HMASTER	CPU (HDMAC) CPU
HTRANS	<u> </u>
HADDR	xsa(sa) sa)sa)da) da) da) da)
HWRITE	
Control	INCR4 / INCR4 / /
HWDATA	(D1 (D2 (D3 (D4 (
HRDATA	(D1 (D2 (D3 (D4)
HREADY	
HRESP	ОК
DMACA[19:16 BC	0x0
DMACA[15:0] TC	

Figure 11-8 Increment/Lap beat transfer (example of INCR4 block transfer)

11.7.3. Channel priority control

DMAC controls priority of each channel by DMACR/PR bits.

11.7.3.1. Fixed priority

When priority is set to DMACR/PR bits, priority order is fixed and bus is given to the lowest figure of channel. Priority controller of DMAC switches channel when active channel is in transfer gap.

Thus, when all channels are active at the same time, the lowest figure of channel (ch0) is able to be selected by priority controller to start transfer. For instance, active channel (ch0) temporarily loses the bus at transfer gap. Then it is given to the second lowest figure of channel (ch1). If ch1 loses bus at transfer gap, it is given to ch0 again.

As a result, those 2 channels are able to preferentially acquire bus in the fixed priority mode.

Figure 11-9 shows defined channel in the fixed priority mode.

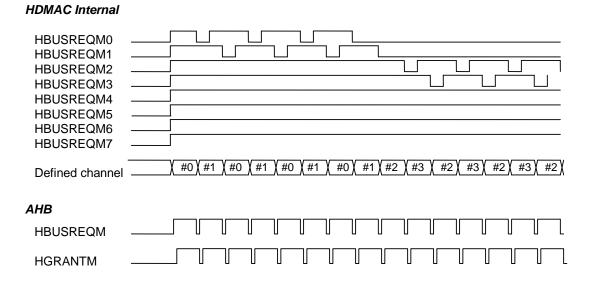


Figure 11-9 Defined channel in the fixed priority

11.7.3.2. Rotate priority

When priority is set to DMACR/PR bits, priority order rotates.

After bus is given to the lowest figure of channel, priority controller of DMAC switches channel at transfer gap of active channel.

Thus, when all channels become active at the same time, the lowest figure of channel (ch0) is selected by priority controller to enable transfer operation.

In the rotate priority mode, all channels are able to acquire bus in rotation. For instance, active channel (ch0) temporarily loses the bus at transfer gap. Then it is given to the second lowest figure of channel (ch1). If ch1 loses bus at transfer gap, it is given to the third lowest figure of channel (ch2.)

Figure 11-10 shows defined channel in the rotate priority mode.

HDMAC Internal

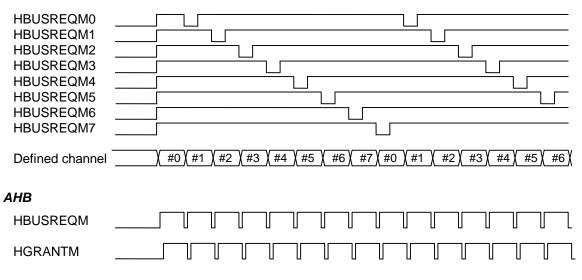


Figure 11-10 Defined channel in the rotate priority

11.7.4. Retry, split, and error

DMAC supports retry and split responses of AHB slave.

11.7.4.1. Retry and split

When DMAC receives retry or split responses from AHB slave during DMA transfer, DMAC negates bus temporarily to construct the contents to be retransmitted.

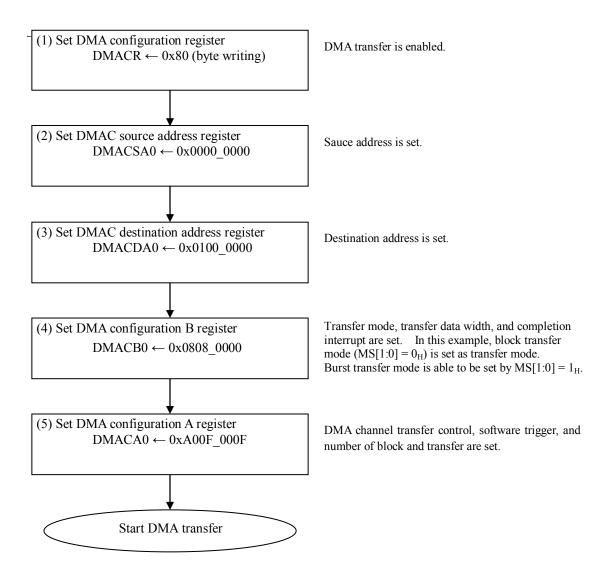
Figure 11-11 shows example of receiving retry response at INCR4 DMA transfer.

HBUSREQ	
HGRANT	
HCLK	
HMASTER	CPU (HDMAC (CPU HDMAC)
HTRANS	<u> </u>
HADDR	XSAX SAX SAXSA XDA X DAX DAX DAX X XDAX
HWRITE	
Control	
HWDATA	<u>(D1 (D2) D3 (D4)</u>
HRDATA	(D1)(D2)(D3)(D4)
HREADY	
HRESP	OK (RETRY) OK
DMACA[19:16 BC	6]0x0
DMACA[15:0] TC	0x0

Figure 11-11 Increment/Lap beat transfer (example of INCR4 block transfer)

When DMAC negates bus temporarily, the channel received retry/split responses is continuously selected by DMAC's priority controller that transfer operation is able to start even though higher priority channel requests the bus

11.7.4.2. Error


When DMAC receives error reply from AHB slave during DMA transfer, DMAC negates bus request and immediately stops the transfer even though it is not completed.

In this case, neither Block/Transfer count register nor Source/Destination address register is updated.

11.8. Example of DMAC setting

11.8.1. DMA start in Single channel

Example of block and burst transfer by software request (with DMAC ch0)

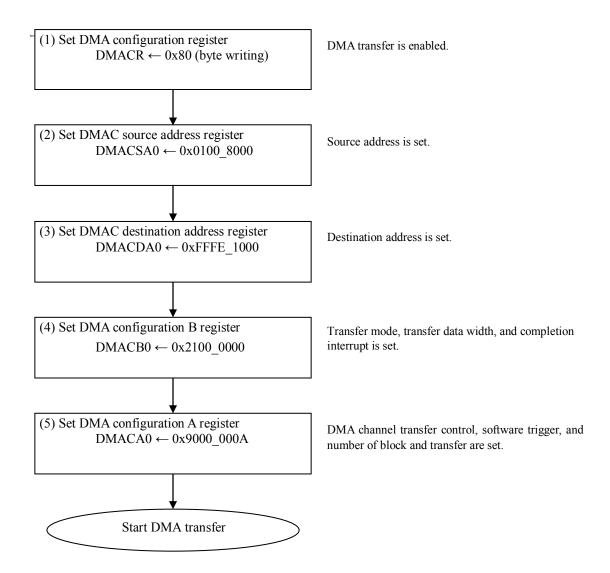

Remark: Setting order of step $1 \sim 4$ is arbitrary; however, the one of step 5 is unable to be changed.

Figure 11-12 Example of block and burst transfer by software request (with DMAC ch0)

Note:

- DMA configuration register (DMACR) should be set by byte writing.
- For block and burst transfer with software request, DMA configuration A register (DMACA) should be set at the end.

Example of demand transfer by software request (with DMAC ch0)

Remark: Setting order of step $1 \sim 5$ is arbitrary; however, the last setting should be step 1 or 5.

Figure 11-13 Example of demand transfer by software request (with DMAC ch0)

Note:

• DMA configuration register (DMACR) should be set by byte writing.

11.8.2. DMA start in all channels (in demand transfer mode)

All channels are able to start simultaneously by setting DMACR register after setting all DMA channels' register in the demand transfer mode. In this case, DMAC priority controller receives request of all channels at the same time, then transfer starts by selecting channel according to DMA channel priority, which is settable with PR bit of the DMACR.

FUĴITSU

12. Timer (TIMER)

This chapter describes function and spec of timer.

12.1. Outline

Timer is 2 channel timer module which is able to set 32/16 bit.

12.2. Feature

Timer has following features:

- 32/16 bit counter $\times 2$ (bit width is controllable with register)
- Supplying 2 interrupt request signals to interrupt controller
- Timer clock prescaler unit
- 3 operation modes:
 - Free-run mode
 - Cycle timer mode
 - One-shot mode
- Using APB clock as base clock of the timer

12.3. Supply clock

APB clock is supplied to timer. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

12.4. Specification

Timer in MB86R01 uses ADKr2p0 (AMBA design kit) timer module of ARM Ltd. Refer to Dual input timer of the AMBA Design Kit Technical Reference Manual for detail spec of the timer.

13. General-purpose input/output port (GPIO)

This chapter describes function and operation of general-purpose input/output port (GPIO.)

13.1. Outline

MB86R01 has max. 24 bit of GPIO port which is in common with other peripheral ports. Refer to "1.6.1 Pin Multiplex" for shared peripherals.

Direction control and data reading/writing of GPIO port is performed with using GPIO control register.

13.2. Feature

GPIO has following features:

- Supplied 24 bit GPIO port
- Composed of following 2 registers
 - Port data register (GPDR)
 - Data direction register (GPDDR)

13.3. Block diagram

Figure 13-1 shows block diagram of GPIO controller. In MB86R01, 24pcs. of these blocks are equipped.

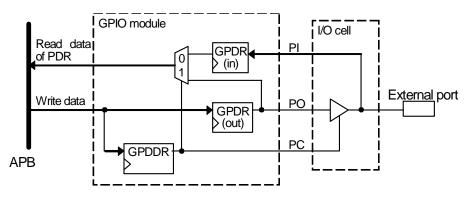


Figure 13-1 Block diagram of GPIO module

13.4. Supply clock

APB clock is supplied to GPIO. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

13.5. Register

This section describes detail of register in GPIO.

13.5.1. Register list

Table 13-1 shows list of GPIO register.

Table 13-1	GPIO register list	t
1abic 15-1	OI IO ICLISICI IIS	Ľ

Addres	s	Register	Abbreviation	Description					
Base	Offset	Register	ADDIEVIATION	Description					
$FFFE_9000_H$	$+ 00_{\rm H}$	Port data register 0	GPDR0	Setting of input/output data of GPIO_PD[7:0] pin					
	$+ 04_{\rm H}$	Port data register 1	GPDR1	Setting of input/output data of GPIO_PD[15:8] pin					
	$+ 08_{\rm H}$	Port data register 2	GPDR2	Setting of input/output data of GPIO_PD[23:16] pin					
	$+ 0C_{H}$	(Reserved)	—	Reserved area (access prohibited)					
	$+ 10_{\rm H}$	Data direction register 0	GPDDR0	Control of input/output direction of GPIO_PD[7:0] pin					
	$+ 14_{\rm H}$	Data direction register 1	GPDDR1	Control of input/output direction of GPIO_PD[15:8] pin					
	$+ 18_{H}$	Data direction register 2	GPDDR2	Control of input/output direction of GPIO_PD[23:16] pin					
	$+ 1C_{H^-}$ (Reserved) $-$ + FFF _H		_	Reserved area (access prohibited)					

Description format of register

Following format is used for description of register's each bit in "13.5.2 Port data register 0-2 (GPDR0-2)" to "13.5.3 Data direction register 0-2 (GPDDR2-0)".

Address		Base address + Offset														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

13.5.2. Port data register 0-2 (GPDR0-2)

GPDR0 - 2 registers are to set input/output data of GPIO port, and their corresponding GPIO pin is as follows.

- GPDR0: GPIO bit 7 0 (GPIO_PD[7:0] pin)
- GPDR1: GPIO bit 15 8 (GPIO_PD[15:8] pin)
- GPDR2: GPIO bit 23 16 (GPIO_PD[23:16] pin)

Input/Output directions of each GPIO are determined by the corresponding bit of GPDDR0 - 2 registers.

Address		$ \begin{array}{l} \mbox{GPDR0: FFFE}_{9000_{\rm H}} + 00_{\rm H} \\ \mbox{GPDR1: FFFE}_{9000_{\rm H}} + 04_{\rm H} \\ \mbox{GPDR2: FFFE}_{9000_{\rm H}} + 08_{\rm H} \end{array} $														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	_	-		-	-	-	-	-	-	-	_	-	_	-	-	-
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											PDR0_0 PDR1_8 PDR2_16					
R/W	-	_	_	_	_	_	_	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

	Bit field	Description
No.	Name	Description
31-8	(Reserved)	Reserved bits. Write access is ignored. Read value of these bits is undefined.
7-0	PDR0_7-0	 GPDR0 register's bit field. The register is setting register of GPIO_PD[7:0] pin's input/output data, and each bit corresponds to GPIO pin as follows. PDR0_7: GPIO_PD[7] pin PDR0_6: GPIO_PD[6] pin PDR0_5: GPIO_PD[5] pin PDR0_4: GPIO_PD[5] pin PDR0_3: GPIO_PD[4] pin PDR0_2: GPIO_PD[2] pin PDR0_1: GPIO_PD[2] pin PDR0_0: GPIO_PD[1] pin PDR0_0: GPIO_PD[0] pin Input/Output directions of GPIO_PD[7] - GPIO_PD[0] pins are determined by the correspondence bit of the GPDDR0 register. Initial value of these bits is undefined.
	PDR1_15-8	 GPDR1 register's bit field. This register is setting register of GPIO_PD[15:8] pin's input/output data, and each bit corresponds to GPIO pin as follows. PDR1_15: GPIO_PD[15] pin PDR1_14: GPIO_PD[14] pin PDR1_13: GPIO_PD[13] pin PDR1_12: GPIO_PD[12] pin PDR1_11: GPIO_PD[11] pin PDR1_09: GPIO_PD[10] pin PDR1_09: GPIO_PD[9] pin PDR1_08: GPIO_PD[8] pin Input/Output directions of GPIO_PD[15] - GPIO_PD[8] pins are determined by the corresponding bit of the GPDDR1 register. Initial value of these bits is undefined.

FUĴĨTSU

	Bit field	Description
No.	Name	Description
7-0	PDR2_23-16	 GPDR2 register's bit field. This register is setting register of GPIO_PD[23:16] pin's input/output data, and each bit corresponds to GPIO pin as follows. PDR2_23: GPIO_PD[23] pin PDR2_22: GPIO_PD[22] pin PDR2_21: GPIO_PD[21] pin PDR2_20: GPIO_PD[20] pin PDR2_19: GPIO_PD[19] pin PDR2_18: GPIO_PD[18] pin PDR2_17: GPIO_PD[17] pin PDR2_16: GPIO_PD[16] pin Input/Output directions of GPIO_PD[23] - GPIO_PD[16] pins are determined by the corresponding bit of the GPDDR2 register. Initial value of these bits is undefined.

13.5.3. Data direction register 0-2 (GPDDR2-0)

GPDDR0 - 2 registers are to control input/output directions of GPIO port, and their corresponding GPIO pin is as follows.

- GPDDR0: GPIO bit 7 0 (GPIO_PD[7:0] pin)
- GPDDR1: GPIO bit 15 8 (GPIO_PD[15:8] pin)
- GPDDR2: GPIO bit 23 16 (GPIO_PD[23:16] pin)

Address		GPDDR0: FFFE_9000 _H + 10 _H GPDDR1: FFFE_9000 _H + 14 _H GPDDR2: FFFE_9000 _H + 18 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	_	-	-		1	1	1	1	-	-	1	_		_	_	-
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									DDR0_7	DDR0_6	DDR0_5	DDR0_4	DDR0_3	DDR0_2	DDR0_1	DDR0_0
Name				(Rese	rved)				DDR1_15	DDR1_14	DDR1_13	DDR1_12	DDR1_11	DDR1_10	DDR1_9	DDR1_8
									DDR2_23	DDR2_22	DDR2_21	DDR2_20	DDR2_19	DDR2_18	DDR2_17	DDR2_16
R/W	_	_	_	_	_	_	_	-	R/W							
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0

	Bit field	Description						
No.	Name	Description						
31-8	(Reserved)	Reserved bits. Write access is ignored. Read value of these bits is undefined.						
7-0	DDR0_7-0	GPDR0 register's bit field. This register controls input/output directions of GPIO_PD[7:0] pin.						
		0 GPIO becomes input port						
		1 GPIO becomes output port						
		 GPIO pin corresponding to this register is as follows: DDR0_7: GPIO_PD[7] pin DDR0_6: GPIO_PD[6] pin DDR0_5: GPIO_PD[5] pin DDR0_4: GPIO_PD[4] pin DDR0_3: GPIO_PD[3] pin DDR0_2: GPIO_PD[2] pin DDR0_1: GPIO_PD[1] pin DDR0_0: GPIO_PD[0] pin These bits are initialized to "0" by reset. 						

	Bit field	Description
No.	Name	Description
7-0	DDR1_15-8	GPDDR1 register's bit field. This register controls input/output directions of GPIO_PD[15:8] pin.
		0 GPIO becomes input port 1 GPIO becomes output port
		 GPIO pin corresponding to this register is as follows: DDR1_15: GPIO_PD[15] pin DDR1_14: GPIO_PD[14] pin DDR1_13: GPIO_PD[13] pin DDR1_12: GPIO_PD[12] pin DDR1_11: GPIO_PD[11] pin DDR1_10: GPIO_PD[10] pin DDR1_9: GPIO_PD[9] pin
		• DDR1_8: GPIO_PD[8] pin These bits are initialized to "0" by reset.
	DDR2_23-16	GPDDR2 register's bit field. This register controls input/output directions of GPIO_PD[23:16] pin. 0 GPIO becomes input port
		1 GPIO becomes output port GPIO pin corresponding to this register is as follows: • DDR2_23: GPIO_PD[23] pin • DDR2_22: GPIO_PD[22] pin • DDR2_21: GPIO_PD[21] pin • DDR2_20: GPIO_PD[20] pin • DDR2_19: GPIO_PD[19] pin • DDR2_17: GPIO_PD[18] pin • DDR2_16: GPIO_PD[16] pin • DDR2_16: GPIO_PD[16] pin

13.6. Operation

This section describes GPIO operation.

13.6.1. Direction control

Direction of GPIO port (bit 23 - 0) and its each bit is able to change by the GPDDRx register. Initial direction (DDRx bit's initial value of the GPDDRx register) after reset is "0" (input port.)

Note:

Notice for bus conflict at changing GPIO port direction.

13.6.2. Data transfer

When GPIO port is used as input port (DDRx = 0), the data signal input to the port input signal (PI) is stored to PDRx (in) at rising edge of APB clock (see Figure 13-1.) Reading GPDRx register enables to observe input data. During the period, write access to the GPDRx register is valid that PDRx (out) is changeable except at DDRx = 0.

When GPIO port is used as output port (DDR = 1), GPDRx register value is output to the port output signal (PO); in that time, read data of the register becomes the same value as the port output signal's.

14. PWM

This chapter describes operation and function of PWM (Pulse Width Modulator.)

14.1. Outline

MB86R01 has 2 channels of PWM which is able to output high-precision PWM wave pattern efficiently.

14.2. Feature

PWM has following features:

- Built-in 2 channels
- Individually setting of duty ratio, phase, and polarity
- Specifying one-shot output/continuous output of the pulse

14.3. Block diagram

Figure 14-1 shows block diagram of PWM.

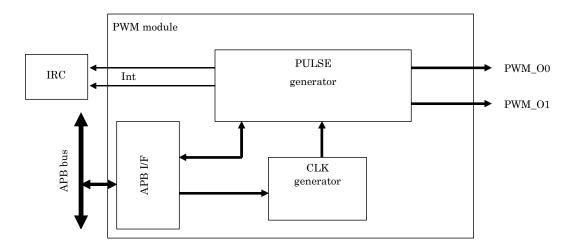


Figure 14-1 PWM block diagram

14.4. Related pin

PWM uses following pins.

Pin	Direction	Qty.	Description
PWM_O0 PWM_O1	OUT	2	PWM0/1 output

PWM pin is common with other peripheral I/O functions. To use the pin, its function should be set by either of followings to be selected to PWM side.

- Set to MPX_MODE_2[2:0] = " 000_B " of multiplex mode setting register
- Set to MPX_MODE_4[1:0] = " 01_B " of multiplex mode setting register
- Set to MPX_MODE_5[1] pin = "H" and MPX_MODE_5[0] pin = "L"

When these are set in multiples and PWM function is selected, the set pin makes PWM pin valid in parallel.

14.5. Supply clock

APB clock is supplied to PWM. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

14.6. Interrupt

When interrupt factor occurs, PWM notifies it to IRC. Refer to "7. Interrupt controller (IRC)" for more detail.

14.7. Register

This section describes PWM register.

14.7.1. Register list

This LSI equips 2 channels of PWM, and each of them has register shown in Table 14-1.

	Addres	U			
Channel	Base	Offset	Register	Abbreviation	Description
PWM ch0	FFF4_1000 _H	$+00_{\rm H}$	PWM ch0 base clock register	PWM0BCR	Setting base clock of PWM cycle
(Output pin PWM_O0)		+ 04 _H	PWM ch0 pulse width register	PWM0TPR	Setting cycle length of 1 pulse
		$+08_{\rm H}$	PWM ch0 phase register	PWM0PR	Setting phase cycle of the pulse
		$+ 0C_{H}$	PWM ch0 duty register	PWM0DR	Setting duty cycle of the pulse
		+ 10 _H	PWM ch0 status register	PWM0CR	Setting PWM such as pulse output format and polarity
		+ 14 _H	PWM ch0 start register	PWM0SR	Setting start/stop of PWM
		+ 18 _H	PWM ch0 current count register	PWM0CCR	Indicating current count value in the BASECLK base
		+ 1C _H	PWM ch0 interrupt register	PWM0IR	Selecting cause of PWM interrupt factor
PWM ch1	FFF4_1100 _H	$+00_{\rm H}$	PWM ch1 base clock register	PWM1BCR	Setting base clock of PWM cycle
(Output pin PWM_O1)		+ 04 _H	PWM ch1 pulse width register	PWM1TPR	Setting cycle length of 1 pulse
		+ 08 _H	PWM ch1st place aspect register	PWM1PR	Setting phase cycle of the pulse
		$+ 0C_{H}$	PWM ch1 duty register	PWM1DR	Setting duty cycle of the pulse
		+ 10 _H	PWM ch1 status register	PWM1CR	Setting PWM such as pulse output format and polarity
		$+ 14_{\rm H}$	PWM ch1 start register	PWM1SR	Setting start/stop of PWM
		+ 18 _H	PWM ch1 current count register	PWM1CCR	Indicating current count value in the BASECLK base
		+ 1C _H	PWM ch1 interrupt register	PWM1IR	Selecting cause of PWM interrupt factor

Table 14-1PWM register list

Note:

Access PWM ch0 and PWM ch1 areas with 32 bit (word.)

Description format of register

Following format is used for description of register's each bit in "14.7.2 PWMx base clock register (PWMxBCR)" to "14.7.9 PWMx interrupt register (PWMxIR)".

Address		Base address + Offset														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

14.7.2. **PWMx base clock register (PWMxBCR)**

This register is to set base clock of PWM cycle.

Address								FFF4 FFF4	_							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R R R R R R R R R R R R R R R														
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								BCR	[15:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field			Description	
No.	Name			Description	
31-16	(Reserved)	Reserved bits. The write acce	ss is ignored. The	read value of these bits	is always "0".
15-0	BCR	Base clock of t	he PWM cycle is set		
		BCR[15:0]	Bas	e clock	
		0	0 APBCLK	(Setting prohibited)	
		1	1 APBCLK		
		65535	65535 APBCLK		
					_

14.7.3. **PWMx pulse width register (PWMxTPR)**

This register is to set cycle length of 1 pulse.

Address								: FFF4 : FFF4	_							
Bit	31	<u>30 29 28 27 26 25 24 23 22 21 20 19 18 17 16</u>														
Name		(Reserved)														
R/W	R	R R R R R R R R R R R R R R R														
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								TPR[[15:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field			Description	
No.	Name			Description	
31-16	(Reserved)	Reserved bits. The write acce	ss is ignored. The r	ead value of these bits is	always "0".
15-0	TPR	Cycle length of	f 1 pulse shown in Fi	gure 14-2 is set.	
		TPR[15:0]	Pulse	cycle length	
		0	0 BASECLK	(Setting prohibited)	
		1	1 BASECLK	(Setting prohibited)	
		2	2 BASECLK		
		65535	65535 BASECLK		

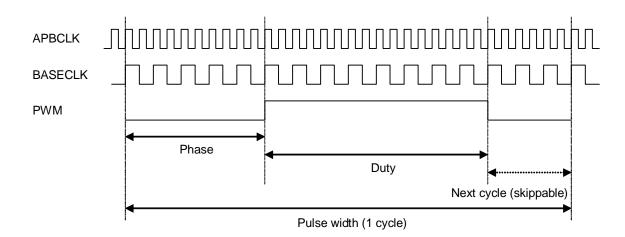


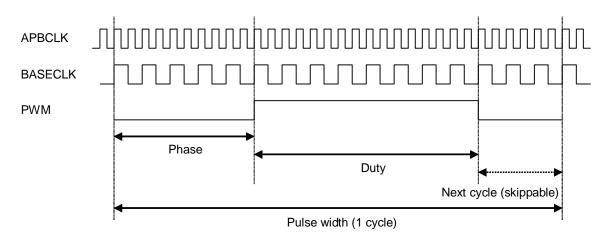
Figure 14-2 Setting parameter

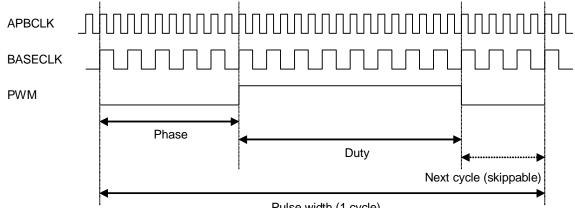
14.7.4. PWMx phase register (PWMxPR)

This register is to set phase cycle of the pulse.

Address								FFF4 FFF4	_							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R R R R R R R R R R R R R R R														
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								PR[1	15:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

_	Bit field			Description	
No.	Name			Description	
31-16	(Reserved)	Reserved bits. The write acce	ss is ignored. The r	ead value of these bits	is always "0".
15-0	PR	Phase cycle sh	own in Figure 14-3 is	s set.	
		PR[15:0]	Phas	e cycle	
		0	0 BASECLK	(Setting prohibited)	
		1	1 BASECLK		
		65535	65535 BASECLK		
					_




Figure 14-3 Setting parameter

PWMx duty register (PWMxDR) 14.7.5.

This register is to set duty cycle of the pulse.

Address								FFF4 FFF4								
Bit	31															
Name		(Reserved)														
R/W	R	R R R R R R R R R R R R R R R														
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DR[15:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field			Decorintion	
No.	Name			Description	
31-16	(Reserved)	Reserved bits.			
		The write acce	ss is ignored. The	read value of these bits i	s always "0".
15-0	DR	Duty cycle sho	own in Figure 14-4 is	s set.	
					_
		DR[15:0]	Du	ty cycle	
		0	0 BASECLK	(Setting prohibited)	
		1	1 BASECLK		
		65535	65535 BASECLK		
		<u> </u>	•		

Pulse width (1 cycle)

Figure 14-4 Setting parameter

14.7.6. PWMx status register (PWMxCR)

This register is to set PWM such as pulse output format and polarity.

Address									_1000 - _1100 -							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R														
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Rese	erved)						ONESHOT	(Rese	erved)	POL
R/W	R	R R R R R R R R R R R R R R/W R/W R/W														
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

i.	Bit field	Description
No.	Name	Description
31-4	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".
3	ONESHOT	Pulse output format, either continuous output or one-shot output is set. 0 Continuous output (initial value) 1 One-shot output
2-1	(Reserved)	Reserved bits. Write "0" to these bits. Read value of these bits is undefined. Note: Writing "1" to these bits is prohibited.
0	POL	Polarity of the pulse is set. 0 Negative pulse (initial value) 1 Positive pulse

14.7.7. PWMx start register (PWMxSR)

This register is to set PWM start-up/stop.

Address									_1000 - _1100 -							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R R R R R R R R R R R R R R R														
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							(F	Reserve	d)							START
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description									
No.	Name	Description									
31-1	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".									
0	START	Start-up/Stop of PWM are set. 0 Stop (initial value)									
		Start-up After pulse cycle ends, this bit is cleared to "0" when ONSHOT bit = 1 of PWMxCR register.									

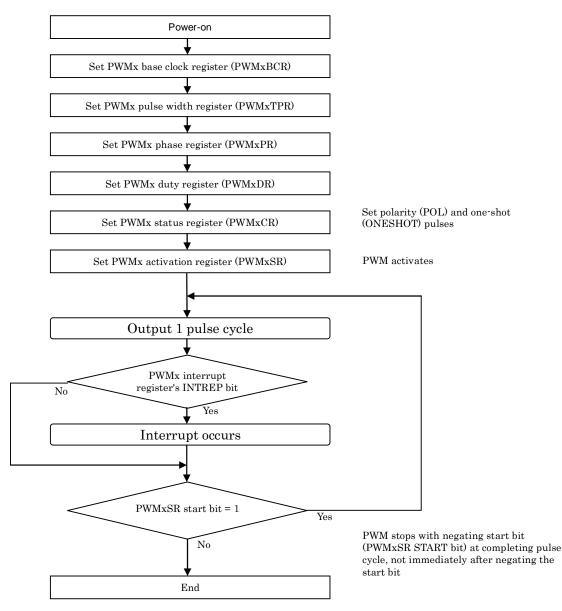
14.7.8. PWMx current count register (PWMxCCR)

Address		ch0 : FFF4_1000 + $18_{\rm H}$														
11001055		ch1 : FFF4_1100 + 18 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		CCR[15:0]														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

This register is to indicate current count value in BASECLK base.

	Bit field		De	escription
No.	Name		De	
31-16	(Reserved)	Reserved bits. The write acces	ss is ignored. The read value	e of these bits is always "0".
15-0	CCR	Current count	value in BASECLK base is in	dicated.
		CCR[15:0]	Duty cycle	
		0	0 BASECLK	
		1	1 BASECLK	
		65535	65535 BASECLK]
				-

14.7.9. **PWMx interrupt register (PWMxIR)**


This register is to select cause of PWM interrupt.

Address	$ch0 : FFF4_{1000} + 1C_{H}$ $ch1 : FFF4_{1100} + 1C_{H}$															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved) INTREP[1:0] (Reserved) D								DONE							
R/W	R	R	R	R	R	R	R/W	R/W	R	R	R	R	R	R	R/W1	R/W1
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description									
No.	Name	Description									
31-10	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".									
9-8	INTREP[1:0]	he bit (DONE bit) which might be the cause of PWM interrupt is selected.									
		VTREP[1:0] Possible cause bit for PWM interrupt									
		00 DONE bit is not selected									
		01 DONE bit is selected as cause of interrupt factor									
		10 (Setting prohibited)									
		11 (Setting prohibited)									
7-1	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".									
0	DONE	This bit indicates end of 1 pulse cycle.									
		0 1 pulse is not output (initial value)									
		1 1 pulse is output									
		This bit is cleared to "0" by writing "1".									

14.8. Example of setting register

This section describes example of register's initial setting.

Set each register in the following condition:

- PWMx base clock register ≥ 1
- PWMx phase register ≥ 1
- PWMx duty register ≥ 1
- PWMx phase register + PWMx duty register ≤ PWMx pulse width register ≥ 2 (The next phase setting after duty operation is omitted)

Figure 14-5 PWM register initial setting example

15. A/D converter

This chapter describes function and operation of A/D converter.

15.1. Outline

MB86R01 has 2 channels of A/D converter.

15.2. Feature

- Successive approximation A/D converter
- Max. conversion rate: Approx. 648K sample/sec, 10 bit resolution
- Immediate reading operation of A/D value by analog data auto. polling operation
- A/D converter operation clock dividing ratio can be selected
 - 1/4 (APB clock is 41.5MHz: Approx. 648.4K sample/sec)
 - 1/8 (APB clock is 41.5MHz: Approx. 324.1K sample/sec)
 - 1/16 (APB clock is 41.5MHz: Approx. 162.0K sample/sec)
 - 1/32 (APB clock is 41.5MHz: Approx. 81.0K sample/sec)
 - 1/64 (APB clock is 41.5MHz: Approx. 40.5K sample/sec)
 - 1/256 (APB clock is 41.5MHz: Approx. 10.1K sample/sec)
 - 1/1024 (APB clock is 41.5MHz: Approx. 2.5K sample/sec)
 - 1/4096 (APB clock is 41.5MHz: Approx. 0.6K sample/sec)

15.3. Block diagram

Figure 15-1 shows block diagram of A/D converter.

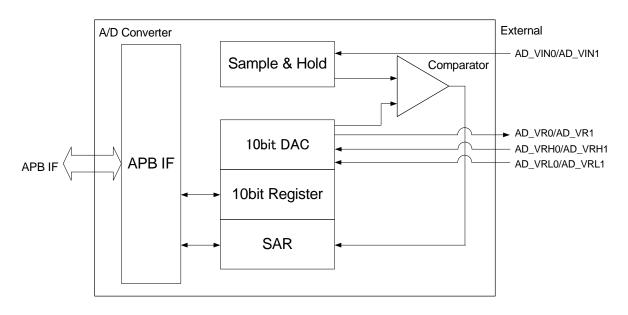


Figure 15-1 Block diagram of A/D converter

15.4. Related pin

A/D converter uses following pins.

Pin	Direction	Qty.	Description
AD_VIN0	IN	1	A/D analog input pin
AD_VIN1	IN	1	A/D analog input pin
AD_VRH0	IN	1	Reference voltage "H" input pin
AD_VRH1	IN	1	Reference voltage "H" input pin
AD_VRL0	IN	1	Reference voltage "L" input pin
AD_VRL1	IN	1	Reference voltage "L" input pin
AD_VR0	OUT	1	Reference output
AD_VR1	OUT	1	Reference output
AD_AVD0	IN	1	Analog power supply pin
AD_AVS1	IN	1	Analog GND

Table 1	5-1 A/I	D conve	erter re	lated	nin
Table 1.				Jaccu	pm

15.5. Supply clock

APB clock is supplied to A/D converter. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

15.6. Output truth value list

Example of truth value of A/D converter is shown below.

Table 15-2 A/D converter's truth value example list

Ideal input level	Output	Dutput code											
VIN[V]	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0			
2.2485	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н			
2.2471 2.2485	Н	Н	Н	Н	Н	Н	Н	Н	Н	L			
2.2456 2.2471	Н	Н	Н	Н	Н	Н	Н	Н	L	Н			
1	1	1	1	-	1	1							
1	!	1		!	:	!	:	!	:	!			
0.7515 0.7529	L	L	L	L	L	L	L	L	L	Н			
0.7515	L	L	L	L	L	L	L	L	L	L			

Note: AD_AVD0 = 3.0V, AD_VRH0/AD_VRH1 = 2.25V, AD_VRL0/AD_VRL1 = 0.75V

15.7. Analog pin equivalent circuit

Figure 15-2 shows analog pin's equivalent circuit of A/D converter.

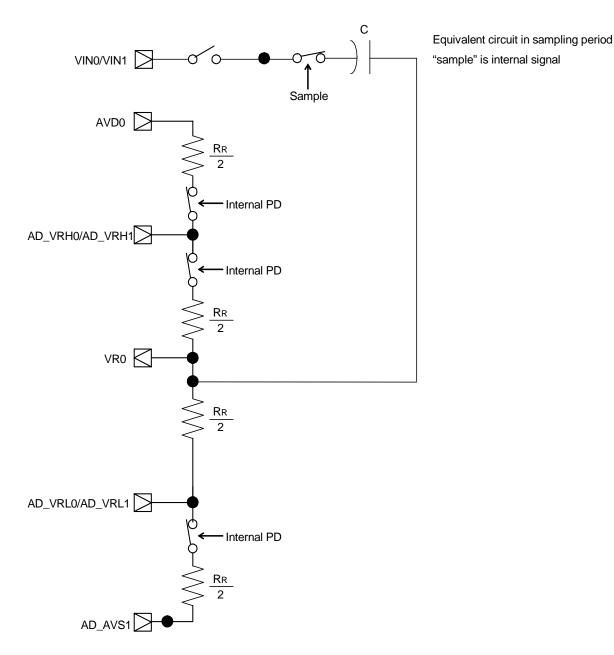


Figure 15-2 Analog pin's equivalent circuit

15.8. Register

This section describes A/D converter register.

15.8.1. Register list

This LSI has 2 channels of A/D converter unit, and each unit has the register shown in Table 15-3.

1401	e 15-5 AD	Citcs	ster nst	1	
Channel	Addres	s	Register	Abbreviation	Description
Chamier	Base	Offset	Register	Abbicviation	Description
ADC ch0	FFF5_2000 _H	$+00_{\rm H}$	ADC ch0 data register	ADC0DATA	A/D converted data is stored
		$+04_{\rm H}$	(Reserved)	_	Reserved area, access prohibited
		+ 08 _H	ADC ch0 power down control register	ADC0XPD	Power down mode is set/released
		$+ 0C_{H}$	(Reserved)	_	Reserved area, access prohibited
		+ 10 _H	ADC ch0 clock selection register	ADC0CKSEL	Clock frequency is supplied to A/D converter
		$+ 14_{\rm H}$	ADC ch0 status register	ADC0STATUS	A/D converted data is stored to data register
ADC ch1	$FFF5_3000_H$	$+00_{H}$	ADC ch1 data register	ADC1DATA	A/D converted data is stored
		$+04_{\rm H}$	(Reserved)	_	Reserved area, access prohibited
		+ 08 _H	Down of ADC ch1 power control register	ADC1XPD	Power down mode is set/released
		$+ 0C_{H}$	(Reserved)	_	Reserved area, access prohibited
		+ 10 _H	ADC ch1 clock selection register	ADC1CKSEL	Clock frequency is supplied to A/D converter
		+ 14 _H	ADC ch1 status register	ADC1STATUS	A/D converted data is stored to data register

Table 15-3 ADC register list

Note:

Access ADC ch0 and ADC ch1 areas with 32 bit (word.)

Description format of register

Following format is used for description of register's each bit in "15.8.2 ADCx data register (ADCxDATA)" to "15.8.4 ADCx clock selection register (ADCxCKSEL)".

Address	Base address + Offset															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

15.8.2. ADCx data register (ADCxDATA)

This register is to store A/D converted data.

Address		$ch0 : FFF5_{2000} + 00_{H}$ $ch1 : FFF5_{3000} + 00_{H}$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		(Reserved) DATA[9:0]														
R/W	R0	R0	R0	R0	R0	R0	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description									
No.	Name	Description									
31-10	(Reserved)	It is a reserved bit. Write access is ignored. Read value of these bits is always "0".									
9-0	DATA[9:0]	Output data from A/D converter is stored with polling operation. When power down mode is set to release at ADCx power down control register (ADCxXPD), data is imported to this register.									

15.8.3. ADCx power down control register (ADCxXPD)

This register is to control A/D converter operation.

Address	$ch0 : FFF5_2000 + 08_H$ $ch1 : FFF5_3000 + 08_H$															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)															
R/W	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved)										XPD					
R/W	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description								
No.	Name	Description								
31-1	(Reserved)	It is a reserved bit. Write access is ignored. Read value of these bits is always "0".								
0	XPD	A/D converter operation is controlled. 0 Power down mode (initial value) 1 Release of power down mode When "1" is written to XPD bit, A/D converter's power-down mode is released and A/D data polling starts. Writing "0" to the bit sets A/D converter's power-down mode and A/D data polling stops.								

15.8.4. ADCx clock selection register (ADCxCKSEL)

This register is to se to specify ADC clock frequency supplying to A/D converter. This setting enables sampling plate change.

Address	$ch0 : FFF5_{2000} + 10_{H}$ $ch1 : FFF5_{3000} + 10_{H}$															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)															
R/W	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved) CKSEL[2:0]															
R/W	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field		Description										
No.	Name												
31-3	(Reserved)		It is a reserved bit. Write access is ignored. Read value of these bits is always "0".										
2-0	CKSEL[2:0]	Specif	fy clock free	quency supplying to A/D conve	erter.								
		CK	SEL[2:0]	Clock frequency setting	Sampling late [sample/sec.]								
			000 _B	1/4096	0.6K								
			001 _B	1/1024	2.5K								
			010 _B	1/256	10.1K								
			011 _B	1/64	40.5K								
			100 _B	1/32	81.0K								
			101 _B	1/16	162.0K								
			110 _B	1/8	324.1K								
			111 _B	1/4	648.4K								
	Hz.) cycles of clock set in this register.												

15.8.5. ADCx status register (ADCxSTATUS)

This register is to indicate whether A/D data conversion is completed.

Address		$ch0 : FFF5_{2000} + 14_{H}$ $ch1 : FFF5_{3000} + 14_{H}$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		(Reserved) CMP														
R/W	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R/W0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

В	it field	Description
No.	Name	Description
31-1	(Reserved)	It is a reserved bit. Write access is ignored. Read value of these bits is always "0".
0	СМР	Whether A/D data conversion is completed is indicated. 0 A/D data conversion is not completed (initial value) 1 A/D data conversion is completed At the time data is set to ADCxDATA, CMP bit becomes "1". Writing "0" to the bit clears register value (although "1" is written to CMP bit, register bit value does not change.) Setting "1" to CMP bit outputs interrupt.

15.9. Basic operation flow

Basic operation flow of ADC is shown below.

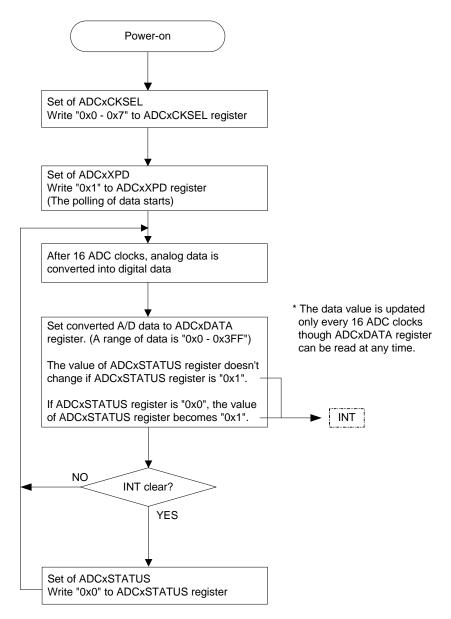


Figure 15-3 AD converter's basic operation flow

16. Graphics display controller (GDC)

Refer to another document, MB86R01/R03 LSI product specifications graphics display controller (GDC) for the controller spec.

17. Serial audio interface (I2S)

This chapter describes function and operation of serial audio interface (hereafter called, I2S.)

17.1. Outline

MB86R01 equips audio I/O interface in I2S format, and up to 3 channels are able to be used.

Note:

I2S is Inter-IC Sound bus advocated by Philips Semiconductors (now NXP).

17.2. Feature

I2S interface in MB86R01 has following features:

- Selecting master/slave operations by programmable
- Supporting state of transmission only, reception only, and simultaneous transmission and reception
- Selecting 1 sub frame and 2 sub frame constructions
- Setting up to 32 channels to each sub frame
- Individually setting number of channel in each sub frame
- Individually setting channel length of each sub frame (number channel bit)
- Individually setting word length in channel of each sub frame (corresponding to MSB-Justified)
- Setting valid/invalid of each channel in each sub frame (Note 1)
- Setting word length from 7 to 32 bit
- Programming frequency of frame synchronous signal
- Setting up to 3071 bit in 1 frame
- Programming width of frame synchronous signal (1 bit or 1 channel length)
- Programming phase of frame synchronous signal (0 bits or 1 bit delay)
- Setting polarity of frame synchronous signal
- Setting polarity of serial bit clock
- Programming sampling point of received data
- Selecting clock frequency dividing source of serial bit clock in the master mode (internal and external clock.)
- Setting clock frequency dividing ratio in the master mode
 Frequency of I2S_SCLK = frequency of AHB clock (or external clock)/2 × CKRT[5:0]
 Frequency dividing ratio is settable within 0 126 in multiple of 2 (when the ratio is 0, frequency dividing source is by-passed)
- Data transfer to system memory by DMA, interrupt, and polling

Note 1:

Data is not sent or received to invalid channel

17.3. Block diagram

Figure 17-1 shows block diagram of I2S. As shown below, MB86R01 has 3 channels of I2S module.

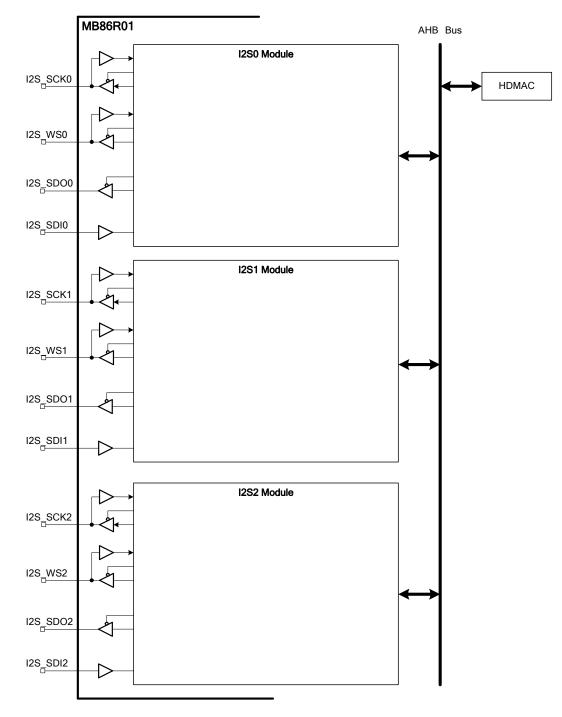


Figure 17-1 Block diagram of I2S

17.4. Related pin

I2S interface uses following pins which are common with other functions. To use this pin, its function should be set to be selected on I2S side to external pin, MPX_MODE_1[1:0] or PIN MPX Select register on CCNT module.

- I2S ch0: Set to MPX_MODE_1[1:0] pin = "HL"
- I2S ch1: Set to MPX_MODE_2[2:0] = "010"/"011"/"100", or MPX_MODE_4[1:0] = "01" of multiplex mode setting register
- I2S ch2: Set to MPX_MODE_2[2:0] = "000"/"010"/"100" of multiplex mode setting register For the case of "100" setting, only the pin with input function among I2S ch2 related pins become valid

Pin	Direction	Qty.	Description
I2S_ECLK0 I2S_ECLK1 I2S_ECLK2	Ι	3	External clock input
I2S_SCK0 I2S_SCK1 I2S_SCK2	ΙΟ	3	Bit clock input/output signal In the master mode: Clock output In the slave mode: Clock input
I2S_WS0 I2S_WS1 I2S_WS2	ΙΟ	3	Input/Output signals of frame synchronization Polarity is settable in the register In the master mode: Frame synch. signal output In the slave mode: Frame synch. signal input
I2S_SDI0 I2S_SDI1 I2S_SDI2	Ι	3	Serial reception data input signal
I2S_SDO0 I2S_SDO1 I2S_SDO2	0	3	Serial transmission data output signal

Table 17-1I2S related pin

17.5. Supply clock

AHB clock is supplied to I2S interface unit. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

17.6. Register

This section describes I2S register.

17.6.1. Register list

Register relating to I2S control is shown below.

Module	Address	Register	Function
I2S ch0	FFEE_0000	I2S0RXFDAT	Reception FIFO data register
	FFEE_0004	I2S0TXFDAT	Transmission FIFO data register
	FFEE_0008	I2S0CNTREG	Control register
	FFEE_000C	I2S0MCR0REG	Channel control register 0
	FFEE_0010	I2S0MCR1REG	Channel control register 1
	FFEE_0014	I2S0MCR2REG	Channel control register 2
	FFEE_0018	I2S0OPRREG	Operation control register
	FFEE_001C	I2S0SRST	Software reset register
	FFEE_0020	I2S0INTCNT	Interrupt control register
	FFEE_0024	I2S0STATUS	STATUS register
	FFEE_0028	I2S0DMAACT	DMA start-up register
2S ch1	FFEF_0000	I2S1RXFDAT	Reception FIFO data register
	FFEF_0004	I2S1TXFDAT	Transmission FIFO data register
	FFEF_0008	I2S1CNTREG	Control register
	FFEF_000C	I2S1MCR0REG	Channel control register 0
	FFEF_0010	I2S1MCR1REG	Channel control register 1
	FFEF_0014	I2S1MCR2REG	Channel control register 2
	FFEF_0018	I2S1OPRREG	Operation control register
	FFEF_001C	I2S1SRST	Software reset register
	FFEF_0020	I2S1INTCNT	Interrupt control register
	FFEF_0024	I2S1STATUS	STATUS register
	FFEF_0028	I2S1DMAACT	DMA start-up register
2S ch2	FFF0_0000	I2S2RXFDAT	Reception FIFO data register
	FFF0_0004	I2S2TXFDAT	Transmission FIFO data register
	FFF0_0008	I2S2CNTREG	Control register
	FFF0_000C	I2S2MCR0REG	Channel control register 0
	FFF0_0010	I2S2MCR1REG	Channel control register 1
	FFF0_0014	I2S2MCR2REG	Channel control register 2
	FFF0_0018	I2S2OPRREG	Operation control register
	FFF0_001C	I2S2SRST	Software reset register
	FFF0_0020	I2S2INTCNT	Interrupt control register
	FFF0_0024	I2S2STATUS	STATUS register
	1110_0024	12020111100	S II II OS IEGISTEI

All registers of I2S correspond to access in byte (8 bit), half word (16 bit), and word (32 bit.)

Description format of register

Following format is used for description of register's each bit in "17.6.2 I2SxRXFDAT register" to "17.6.12 I2SxDMAACT register".

Address		Base address + Offset														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

17.6.2. I2SxRXFDAT register

This register is reception FIFO register that is able to maintain up to 66 words (simultaneous transmission and reception mode) or 132 words (reception only mode.)

Address				ch0:I	FFEE_	0000 (h) ch1	: FFE	F_000	0 (h)	ch2 : F	FF0_0	000 (h)	1		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		RXDATA														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		RXDATA														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-0	RXDATA[31:0]	The word received from serial bus is written to reception FIFO. When frame is 1 sub frame construction and word length set to S0WDLN of MCR0REG register is 32 bit or less (16 bit when RHLL of CNTREG register is "1"), it is written to reception FIFO after higher order bit is extended. When frame is 2 sub frame construction and word length set to S0WDLN of MCR0REG register is 32 bit or less (16 bit when RHLL of CNTREG register is "1"), reception data of sub frame 0 is written to reception FIFO after higher order bit is extended. For the case that word length set to S1WDL of MCR0REG register is 32 bit or less, reception data of sub frame 1 is written to reception FIFO after higher order bit is extended. When BEXT of CNTREG register is "1", it is extended with MSB of reception word (sign extension). For the case that the value is "0", it is enhanced by "0". Top of the data (First In) of reception FIFO is able to be read by read access, and then the next reception FIFO data is automatically updated. It is able to be accessed regardless of shift register's operation status. When RXNUM of STATUS register is "0", invalid data is able to be read. Writing to RXDATA is ignored.

17.6.3. I2SxTXFDAT register

This register is transmission FIFO register that is able to maintain up to 66 words (simultaneous transmission and reception mode mode) or 132 words (transmission only mode.)

Address				ch0:I	FFEE_	0004 (h) ch1	: FFE	F_0004	4 (h)	ch2:F	FF0_0	004 (h)	1		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		TXDATA														
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TXDATA														
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description							
No.	Name	Discription							
31-0		Word to be transmitted is able to be written as long as transmission FIFO is not full. Write access is able to be performed regardless of shift register's operation status. The word written to full transmission FIFO is actually not written. Although writing data is accessed in word, half-word, and byte access, actual number of bit to be transmitted is determined by S0WDL and S1WDL (when frame is 2 sub frame) of MCR0REG register. The data read from TXDATA is invalid one (the data after right justified last written data.)							

17.6.4. I2SxCNTREG register

Address				ch0:I	FFEE_	0008 (h) ch1	: FFE	F_0008	B (h)	ch2 : F	FF0_0	008 (h)			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	CKRT						OVHD									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	_	MSKB	MSMD	SBFN	RHLL	ECKM	BEXT	FRUN	MLSB	TXDIS	RXDIS	SMPL	CPOL	FSPH	FSLN	FSPL
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0

	Bit field	Description											
No.	Name			Description									
31-26	CKRT[5:0]	AHB clock is number of the becomes numb Setting exampl	This sets output clock frequency dividing ratio at master operation. AHB clock is divided at ECKM = 0, and external clock is divided at ECKM = 1. Only even number of the ratio is supported and output clock's DUTY becomes 50%. CKRT [5:0] \times 2 becomes number of AHB clock or external clock cycle included in 1 cycle (I2S_SCKx.) Setting examples are shown below. External clock mode and external clock are 24.576MHz: External clock mode and external clock are 24.576MHz :										
		CKRT											
		0x00	0x00 By pass 24.576MHz (external clock is output as it is)										
		0x01	1/2	12.288MHz									
		0x02	1/4	6.144MHz									
		0x03	1/6	4.096MHz									
		0x04	1/8	3.072MHz									
		0x05 1/10 2.458MHz											
		Internal clock mode and AHB clock are 80MHz:											
		CKRT	Dividing ratio	I2S_SCKx									
		:	:	:	_								
		0x04	1/8	10MHz	_								
		0x05	1/10	8MHz	_								
		0x06	1/12	6.67MHz	_								
		0x07	1/14	5,71MHz	_								
		0x08	1/16	5MHz	_								
		0x09	1/18	4.44MHz	_								
		:	:	:									
25-16	OVHD[9:0]	 Frame rate is able to be adjusted by inserting OVHD bit following to valid data of the frame. OVHD section of the transmission frame becomes in high impedance. Up to 0 – 1023 OVHD bit is able to be inserted, and is inserted at the end of the frame. The value set to OVHD becomes the number of insertion bit. The following expressions are formed for OVHD and frame synchronous signal cycle (2nd.) 1 sub frame construction: OVHD = Frame synchronous signal cycle/I2S_SCKx cycle – (S0CHL + 1) × (S0CHN + 1) 2 sub frame construction: OVHD = Frame synchronous signal cycle/I2S_SCKx cycle – (S0CHL + 1) × (S0CHN + 1) – (S1CHL + 1) × (S1CHN + 1) 											
15	(Reserved)	Reserved bits. The write acces	ss is ignored. The	e read value of these bits is always "0".									

	Bit field	Description
No.	Name	Description
14	MSKB	 Serial output data of invalid transmission frame is set. For master operation (MSMD = 1), free-running mode (FRUN = 0), and TXENB = 1: When transmission FIFO is empty at frame synchronous signal output, MSKB is output to all valid channels of its transmission frame. For slave operation (MSMD = 0) and TXENB = 1: When transmission FIFO is empty at frame synchronous signal reception, MSKB is output to all valid channels of its transmission frame. For the case that transmission word length is shorter than the channel length, MSKB is driven to the rest of bit in transmission channel (channel length -word length.)
13	MSMD	Master and slave modes are set. 0 Slave operation 1 Master operation
12	SBFN	Sub frame construction (number of sub frame) of the frame is specified. 0 1 sub frame construction (only sub frame 0) 1 2 sub frame construction (sub frame 0 and sub frame 1) Frame starts from the 0th sub frame
11	RHLL	Whether word structure of FIFO is 1 or 2 words is set. It is considered to be used at protocol, such as I2S and MSB-Justified. 0 32 bit FIFO word is handled as 1 word 1 32 bit FIFO word is handled as 2 words at serial bus with dividing 16 bit each to low order and high order. They are transferred by serial bus in order of low order, high order, low order, and high order. At reception, 2 consecutive words from serial bus is handled as low order and high order, and they are put in 1 word (32 bit) to write to reception FIFO.
10	ECKM	Clock frequency dividing is selected in the master mode. 0 Internal clock (AHB clock) is divided and output 1 External clock (2S_ECLKx pin input) is divided and output
9	BEXT	When reception word length is shorter than the word length of FIFO (32 bit when RHLL is "0", and 16 bit when RHLL is "1"), extension mode of upper bit (word length of FIFO - reception word length) should be set. 0 Extended by 0 1 Extended by sign bit (for MSB of word is "1", extended by "1" and its "0" is extended by "0")
8	FRUN	Output mode of frame synchronous signal is set. 0 Burst mode When START bit of OPRREG register is "1", frame synchronous signal is output according to TXENB, RXENB, and transmission/reception FIFO conditions 1 Free-running mode When START bit of OPRREG register is "1", frame synchronous signal proceeds free-running with the set frame rate When START bit is "0", frame synchronous signal is not output.

	Bit field	Description
No.	Name	Description
7	MLSB	Word bit's shift order is set.
		0 Shift starts from MSB of the word
		1 Shift starts from LSB of the word
6	TXDIS	Transmitting function is enabled or disabled.
		0 Transmitting function is enabled
		1 Transmitting function is disabled
5	RXDIS	Receiving function is enabled or disabled.
		0 Receiving function is enabled
		1 Receiving function is disabled
4	SMPL	Sampling point of the data is specified.
		0 Sampling at the center of reception data
		1 Sampling at the end of reception data
3	CPOL	I2S_SCKx polarity which drives/samples serial data is specified.
		0 Data is driven at rising edge of I2S_SCKx, and sampled at falling edge
		1 Data is driven at falling edge of I2S_SCKx, and sampled at rising edge
2	FSPH	Phase is specified to I2S_WSx frame data.
		0 I2S_WSx becomes valid 1 clock before the first bit of frame data
		1 I2S_WSx becomes valid at the same time as the first bit of frame data
1	FSLN	Pulse width of I2S_WSx is specified.
		0 Pulse width is 1 cycle/I2S_SCKx long (1 bit)
		1 Pulse width is 1 channel long (1 channel)
		Setting "1" is prohibited when frame length is 1 channel long.
0	FSPL	Polarity of I2S_WSx pin is set.
		0 Frame synchronous signal becomes valid with I2S_WSx is "1" The value is "0" at idle
		Frame synchronous signal becomes valid with I2S WSx is "0"
		¹ The value is "1" at idle

Note:

Do not overwrite CNTREG register when START bit of OPRREG register is "1".

17.6.5. I2SxMCR0REG register

Address			(ch0 : F	FEE_0	00C (h) ch1	: FFE	F_0000	C (h)	ch2:F	FFF0_0	00C (h)		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	– S1CHN								S1CHL	,				S1WDI		
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	– SOCHN							SOCHL				SOWDL				
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	
31	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".
30-26	S1CHN[4:0]	Number of channel of sub frame 1 is set. This is valid only when the frame is 2 sub frame construction (SBFN of CNTREG is "1"), and is invalid when the frame is 1 sub frame construction (SBFN of CNTREG is "0".) Up to 32 channels are able to be specified, and S1CHN needs to be set to "number of channel – 1".
		Example 1 S1CHN = "00011": Sub frame 1 becomes 4 channel construction Example 2 S1CHN = "11111": Sub frame 1 becomes 32 channel construction
		S1WDL is valid only in 2 sub frame construction (SBFN of CNTREG is "1") and is invalid in 1 sub frame construction (SBFN of CNTREG is "0".)
25-21	S1CHL[4:0]	Channel length of the channel constructing sub frame 1 (bit length of channel) is set. 7 - 32 bit of channel length are available but 1 - 6 bit are prohibited. S1CHN needs to be set to "number of channel – 1".
		Example 1 S1CHL = "00110": Channel length becomes 7 bit Example 2 S1CHL = "11111": Channel length becomes 32 bit
		Channel length is able to be set to 32 or less regardless of RHLL value of CNTREG register. S1WDL is valid only in 2 sub frame construction (SBFN of CNTREG is "1") and is invalid in 1 sub frame construction (SBFN of CNTREG is "0".)
20-16	S1WDL[4:0]	Word length of the channel constructing sub frame 1 (bit length of channel) is set. 7 - 32 bit of word length are available but 1 - 6 bit are prohibited. S1WDL needs to be set to "word length -1 ".
		Example 1 S1WDL = "00110": Word length becomes 7 bit Example 2 S1WDL = "11111": Word length becomes 32 bit
		RHLL of CNTREG register is "1": Set word length to 16 or less and channel length to shorter than the one set to S1CHL RHLL of CNTREG register is "0": Set word length to 32 or less and channel length to shorter than the one set to S1CHL S1WDL is valid only in 2 sub frame construction (SBFN of CNTREG is "1") and is invalid in 1
		sub frame construction (SBFN of CNTREG is "0".)
15	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".
14-10	S0CHN[4:0]	Number of channel of sub frame 0 is set up to 32 channels. S0CHN needs to be set to "number of channel – 1".
		Example 1 SOCHN = "00011": Sub frame 0 becomes 4 channel construction Example 2 SOCHN = "11111": Sub frame 0 becomes 32 channel construction

Bit field	Description
Name	Description
S0CHL[4:0]	Channel length of the channel constructing sub frame 0 (bit length of channel) is set. 4 - 32 bit of channel length are available but 1 - 6 bit are prohibited. S0CHN needs to be set to "channel length – 1".
	Example 1 SOCHL = "00110": Channel length becomes 7 bit
	Example 2 SOCHL = "11111": Channel length becomes 32 bit
	The channel length can be set to 32 or less regardless of RHLL value of CNTREG register.
S0WDL[4:0]	Word length of the channel constructing sub frame 0 (number of bit in channel) is set. 4 - 32 bit of word length are available but 1-6 bit are prohibited. SOWDL needs to be set to "word length - 1".
	Example 1 SOWDL = "00110": Word length becomes 7 bit Example 2 SOWDL = "11111": Word length becomes 32 bit
	RHLL of CNTREG register is "1": Set word length to 16 or less and channel length to shorter than the one set to SOCHL RHLL of CNTREG register is "0": Set word length to 32 or less and channel length to shorter than the one set to SOCHL
	Name SOCHL[4:0]

17.6.6. I2SxMCR1REG register

This register controls enable and disable functions to each channel of sub frame 0.

Address				ch0 : I	FFEE_	0010 (h) ch1	: FFE	F_001	0 (h)	ch2 : F	FF0_0	010 (h)			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH
Name	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH	S0CH
Name	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-0		Name (SOCHxx) of each bit indicates channel number xx of sub frame 0 (e.g. SOCH00 bit controls 0th channel of sub frame 0.) Thus, SOCH31 bit controls 31st channel of sub frame 0.
		0 The corresponding channel is disabled Transmission/Reception are not performed to the disabled channel
		1 The corresponding channel is enabled Transmission/Reception are performed to the enabled channel

17.6.7. I2SxMCR2REG register

This register is to control enable and disable functions to each channel of sub frame 1.

Address				ch0:I	FFEE_	0014 (h) ch1	: FFE	F_0014	4 (h)	ch2 : F	'FF0_0	014 (h)			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH
Iname	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH	S1CH
Iname	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-0	S1CH31-S1CH00	Name (S1CHxx) of each bit indicates channel number xx of sub frame 1 (e.g. S1CH00 bit controls 0th channel of sub frame 1.) Thus, S1CH31 bit controls 31st channel of sub frame 1. When frame is 1 sub frame construction (SBFN of CNTREG is "0"), this is invalid.
		0 The corresponding channel is disabled Transmission/Reception are not performed to the disabled channel
		1 The corresponding channel is enabled Transmission/Reception are performed to the enabled channel

17.6.8. I2SxOPRREG register

Address				ch0 : 1	FFEE_	0018 (h) ch1	I:FFE	F_0018	8 (h)	ch2 : F	FF0_0	018 (h)			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name			(F	Reserve	d)			RXENB			(F	Reserve	d)			TXENB
R/W	R	R	R	R	R	R	R	R/W	R	R	R	R	R	R	R	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							(F	Reserve	d)							start
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description									
No.	Name	Description									
31-25	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".									
24	RXENB	Enable/Disable functions of receiving operation is set. 0 Receiving operation is disabled									
		Reception FIFO becomes empty with writing "0" to this bit When RXENB is "0", the data received from serial reception bus is not written to reception FIFO DMA reception channel stops during DMA transfer									
		1 Receiving operation is enabled									
23-17	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".									
16	TXENB	Enable/Disable functions of transmitting operation is set.									
		 Transmitting operation is disabled Reception FIFO becomes empty with writing "0" to this bit When TXENB is "0", the data written to TXFDAT register from CPU or DMA is not written to transmission FIFO DMA reception channel stops during DMA transfer 									
		1 Transmitting operation is enabled									
15-1	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".									
0	start	I2S is enabled/disabled.									
		0 I2S is stop, and internal transmission/reception FIFO becomes empty by writing "0" to this bit									
		1 I2S is operable									
		Prohibit overwriting CNTREG, MCR0REG, MCR1REG, and MCR2REG registers when Start is "1".									

17.6.9. I2SxSRST register

This register is to control I2S software reset.

Address			(ch0 : F	FEE_0	01C (h) ch1	: FFE	F_0010	C (h)	ch2: H	FFF0_0	01C (h)		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)															
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							(F	Reserve	d)							SRST
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-1	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".
0	SRST	Software reset is performed by writing "1". STATUS register and each internal state machine become initial state by software reset, and transmission/reception FIFO becomes empty. There is no influence in registers other than STATUS, INTCNT, and DMAACT registers. When read value is "0" after writing "1", it indicates software reset is completed. "1" indicates software reset is in process.

17.6.10. I2SxINTCNT register

Address				ch0 :	FFEE_	0020 (1	h) ch1	l : FFE	F_002	0 (h)	ch2:F	FF0_0(020 (h)			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	_	TXUD1M	TBERM	FERRM	TXUD0M	TXOVM	TXFDM	TXFIM	(Rese	erved)	RBERM	RXUDM	RXOVM	EOPM	RXFDM	RXFIM
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Initial	0	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		(Rese	erved)			TF	TH		(Rese	erved)	RPT	MR		RF	TH	
R/W	R	R	R	R	R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".
30	TXUDIM	0 Interrupt to CPU by TXUDR1 of STATUS register is not masked 1 Interrupt to CPU by TXUDR1 of STATUS register is masked
29	TBERM	This is interrupt mask bit of block size error of transmission channel. It becomes "1" by software reset. 0 Interrupt to CPU by TBERR of STATUS register is not masked 1 Interrupt to CPU by TBERR of STATUS register is masked
28	FERRM	This is frame error interrupt mask bit. It becomes "1" by software reset. 0 Interrupt to CPU by FERR of STATUS register is not masked 1 Interrupt to CPU by FERR of STATUS register is masked.
27	TXUD0M	This is transmission FIFO underflow interrupt mask bit. It becomes "1" by software reset. 0 Interrupt to CPU by TXUDR0 of STATUS register is not masked. 1 Interrupt to CPU by TXUDR0 of STATUS register is masked.
26	TXOVM	This is transmission FIFO overflow interrupt mask bit. It becomes "1" by software reset. 0 Interrupt to CPU by TXOVM of STATUS register is not masked. 1 Interrupt to CPU by TXOVM of STATUS register is masked.
25	TXFDM	This is DMA request mask register bit. It becomes "1" by software reset. 0 DMA transfer is requested when reception data written to transmission FIFO is threshold value or more 1 DMA transfer is not requested even reception data written to transmission FIFO is threshold value or more

FUJITSU

	Bit field	Description
No.	Name	
24	TXFIM	This is transmission FIFO interrupt mask bit. It becomes "1" by software reset.
		0 Interrupt to CPU by TXFI of STATUS register is not masked
		1 Interrupt to CPU by TXFI of STATUS register is masked
23-22	(Reserved)	Reserved bits.
23-22	(Reserved)	The write access is ignored. The read value of these bits is always "0".
21	RBERM	This is interrupt mask bit of reception channel block size error. It becomes "1" by software reset.
		0 Interrupt to CPU by RBERR of STATUS register is not masked
		1 Interrupt to CPU by RBERR of STATUS register is masked
20	RXUDM	This is reception underflow interrupt mask bit. It becomes "1" by software reset.
		0 Interrupt to CPU by RXUDR of STATUS register is not masked
		1 Interrupt to CPU by RXUDR of STATUS register is masked
19	RXOVM	This is interrupt mask bit of reception FIFO overflow. It becomes "1" by software reset.
		0 Interrupt to CPU by RXOVR of STATUS register is not masked
		1 Interrupt to CPU by RXOVR of STATUS register is masked
10	FODM	
18	EOPM	This is interrupt mask bit by EOPI of STATUS register. It becomes "1" by software reset.
		0 Interrupt to CPU by EOPI of STATUS register is not masked
		1 Interrupt to CPU by EOPI of STATUS register is masked
17	RXFDM	This is reception DMA request mask bit. It becomes "1" by software reset.
		0 DMA transfer is requested when reception data written to reception FIFO is threshold value or more
		1 DMA transfer is not requested though reception data written to reception FIFO is threshold value or more
16	RXFIM	This is reception FIFO interrupt mask bit. It becomes "1" by software reset.
		0 Interrupt to CPU by RXFI of STATUS register is not masked
		1 Interrupt to CPU by RXFI of STATUS register is masked
15-12	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".
11-8	TFTH[3:0]	Threshold value of transmission FIFO is set. Empty space of transmission FIFO is threshold value or more and TXFIM is "0": Interrupt to CPU occurs Empty space of transmission FIFO is threshold value or more and TXFDM is "0": DMA is requested to DMAC
		TFTH is set according to the following expressions. TFTH = Transmission FIFO threshold – 1

	Bit field	Description
No.	Name	Description
7-6	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".
5-4	RPTMR[1:0]	This is packet reception completion timer setting bit which sets time-out value of the internal reception completion timer. Reception FIFO is not empty and number of its data is smaller than threshold value: The timer always counts up Reception FIFO is empty or the data value is threshold value or more: The timer is cleared. When the timer becomes time-out, EOPI bit of STATUS register is set to "1". The timer becomes "00" by software reset. 00 0 (the timer is not in operation) 01 54000 AHB clock cycles 10 108000 AHB clock cycles 11 216000 AHB clock cycles
3-0	RFTH[3:0]	Threshold value of reception FIFO is set. Number of reception word written to reception FIFO is threshold value or more and RXFIM is "0": Interrupt to CPU occurs Number of reception word written to reception FIFO is threshold value or more and RXFDM is "0": DMA is requested to DMAC RFTH is set according to the following expressions. RFTH = Reception FIFO threshold – 1

17.6.11. I2SxSTATUS register

Address				ch0 : 1	FFEE_	0024 (h	n) ch1	: FFE	F_0024	4 (h)	ch2:F	FF0_0	024 (h)			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	TBERR	RBERR	FERR	TXUDR1	TXUDR0	TXOVR	RXUDR	RXOVR		(Rese	rved)		EOPI	BSY	TXFI	RXFI
R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	R	R	R
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				TXN	JUM							RXN	NUM			
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

]	Bit field	Description							
No.	Name	Description							
31	TBERR	In order to set block size of DMA transmission channel to larger value than I2S transmission FIFO threshold (TFTH+1) to operate, this bit is set to "1" and I2S stops the transfer. When TBERR is "1" and TBERM of the INTCNT register is "0", interrupt to CPU occurs. This bit becomes "0" by software and hardware reset.							
30	RBERR	In order to set block size of DMA reception channel to larger value than I2S reception FIFO threshold (RFTH+1) to operate, this bit is set to "1" and stop the channel. When RBERR is "1" and RBERM of the INTCNT register is "0", interrupt to CPU occurs. This bit becomes "0" by software and hardware reset.							
29	FERR	 Occurrence of frame error is indicated. This bit is set to "1" in the following cases: Frame synchronous signal is not able to be received with the set frame rate in the free-running mode (FRUN = 0 of CNTREG) and the slave mode (MSMD = 0 of CNTREG) The next frame synchronous signal is received during frame transmission/reception in the slave mode (MSMD = 0 of CNTREG), not free-running mode (FRUN = 1 of CNTREG) When FERR is "1" and FERRM of INTCNT register is "0", interrupt to CPU occurs. Writing "1" from CPU clears the value to "0". This becomes "0" by software reset. 							
28	TXUDR1	When transmission FIFO underflows at the top of frame, the value is set to "1". Writing "1" from CPU clears the value to "0". This becomes "0" by software reset.							
27	TXUDR0	When transmission FIFO underflows during frame transmission (from 2nd bit word to the last frame of the word), the value is set to "1". Writing "1" from CPU clears the value to "0". This becomes "0" by software reset.							
26	TXOVR	When transmission FIFO overflows, the value is set to "1" indicating transmission data is written in the condition that transmission FIFO is full. The value "1" indicates 1 word or more of transmission data is deleted. When TXOVR is "1" and TXOVM of INTCNT register is "0", interrupt to CPU occurs. Writing "1" from CPU clears the value to "0". This becomes "0" by software reset.							
25	RXUDR	When reception FIFO underflows, the value is set to "1" indicating read access is carried out to reception FIFO in the condition that reception FIFO is empty. Writing "1" from CPU clears the value to "0". This becomes "0" by software reset.							
24	RXOVR	When reception FIFO overflows, the value is set to "1" indicating reception is carried out in the condition that reception FIFO is full. The value "1" indicates 1 word or more of reception data is deleted. When RXOVR is "1" and RXOVM of INTCNT register is "0", interrupt to CPU occurs. Writing "1" from CPU clears the value to "0". This becomes "0" by software reset.							
23-20	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".							

	Bit field	Description					
No.	Name	Description					
19	EOPI	This is interrupt flag containing reception timer. The timer is enabled when following conditions are met at the same time:					
		• RXDIS of CNTREG register is set to "0"					
		• RXFDM of INTCNT register is set to "0"					
		• MSMD of CNTREG register is set to "0"					
		START bit of OPRREG register is set to "1" and RXENB = "1"					
		After the reset, operation starts with the 1st word reception. Then the value is cleared every time word is received. When reception FIFO is not empty at the time set to RPTMR of INTCNT register, the value is set to "1". When EOPI is "1" and EOPM of INTCNT register is "0", interrupt to CPU occurs. The value is automatically cleared if reception FIFO data is threshold or more, or it becomes empty. Writing "1" from CPU clears the value to "0". This becomes "0" by software reset.					
18	BSY	Serial transmission control part is busy state. This bit is not affected by software reset.					
		0 Serial transmission control part is in idle					
		1 Serial transmission control part is in busy					
17	TXFI	When empty slot of transmission FIFO is larger than the threshold set in TFTH of INTCNT register, this bit is set to "1".					
		This bit is "1" and TXFIM bit of INTCNT register is "0": Interrupt to CPU occurs This bit is "1" and TXFDM bit of INTCNT register is "0": DMA is requested					
		When number of empty slot of reception FIFO becomes smaller than the threshold by writing to TXFDAT register from CPU or DMAC, this bit is cleared automatically to "0". The value is also become "0" when START bit of start register is "0" and TXENB bit of OPRREG register is "0". If software reset is performed at START bit = "1" and TXENB bit = "1", the value becomes "0" during software reset then changes to "1" after the process.					
16	RXFI	When number of reception FIFO data is larger than the threshold set in RFTF of INTCNT register, this bit is set to "1".					
		This bit is "1" and RXFIM bit of INTCNT register is "0": Interrupt to CPU occurs This bit is "1" and RXFDM bit of INTCNT register is "0": DMA is requested					
		When number of data in reception FIFO becomes smaller than the threshold by reading RXFDAT register from CPU or DMAC, this bit is automatically cleared to "0". When START bit of start register is "0" or RXENB bit of OPRREG register is "0", this bit becomes "0". This becomes "0" by software reset.					
15-8	TXNUM[7:0]	The number of data in transmission FIFO is indicated.					
	in (en(), oj	This bit is incremented by write access to TXFDAT register and decremented by serial word transfer. Max. value of 66 can be displayed in the simultaneous transmission and reception mode, and value of 132 in the transmission only mode. This becomes "0" by software reset.					
7-0	RXNUM[7:0]	The number of data in reception FIFO is indicated. This bit is incremented by word reception from serial bus and decremented by read access to RXFDAT register. Max. values of 66 can be displayed in the simultaneous transmission and reception mode, and value of 132 in the reception mode. This becomes "0" by software reset.					

17.6.12. I2SxDMAACT register

Address				ch0 :	FFEE	_0028	(h) c	h1 : F	FEF_0	028 (h)) ch2	: FFF	0_0028	8 (h)		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							(F	Reserve	d)							TDMACT
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							(F	Reserve	d)							RDMACT
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Initial	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-17	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".
16	TDMACT	Transmission channel of DMAC (DMA controller) is activated. After transfer channel starts, software should write "1" to TDMACT to teach I2S that the transfer channel is active. When TDMACT is "0", transfer request of transmission channel block is not sent to DMAC. I2S automatically clears TDMACT every time DMA packet transmission completes. Writing "0" from CPU clears the value to "0". This becomes "0" by software reset.
		0 Transmission channel of DMAC is stop that TXDREQ is unable to be detected 1 Transmission channel of DMAC is activated that TXDREQ is able to be detected
15-1	(Reserved)	Reserved bits. The write access is ignored. The read value of these bits is always "0".
0	RDMACT	The reception channel of DMAC (DMA controller) is activated. After reception channel starts, software should write "1" to RDMACT to teach I2S that the channel is active. When RDMACT is "0", transfer request of reception channel block is not sent to DMAC. I2S automatically clears RDMACT every time DMA packet reception completes. Writing "1" from CPU clears the value to "0". This becomes "0" by software reset.
		1 Reception channel of DMAC is stop that RXDREQ is unable to be detected

17.7. Operation

17.7.1. Outline

This module is synchronous serial interface which enables full duplex and multiplexer channel. It is also able to correspond to various frame formats by register setting. (Refer to "17.7.3 Frame construction" for detail.)

This module is also able to operate as master and slave. In the master mode, clock (I2S_SCKx) and frame synchronous signal (I2S_WSx) are output to the external slave. In the slave mode, they are input from the external master.

During the master mode, I2S_SCKx clock can be output by dividing external clock (I2S_external clock x) or internal clock (it is selectable at register). Frame synchronous signal can be generated by free-running or burst mode (generated only when there is transmission data.)

This module equips transmission and reception FIFO, and its depth varies depending on mode:

Transmission only mode: 132word x 32bit transmission FIFO

Reception only mode: 132word x 32bit reception FIFO

Simultaneous transmission and reception mode: 66word x 32bit transmission FIFO and

66word x 32bit reception FIFO

Refer to "17.7.3 Frame construction" for more detail. Internal transfer between transmission and reception FIFO and internal system memory is able to be performed by DMA, interrupt, and polling.

17.7.2. Transfer start, stop, and malfunction

Transmission only mode

Transfer setting	Operation	Master mode (MSMD = 1)	Slave mode (MSMD = 0)
Transmission only TXDIS = 0 RXDIS = 1	Start	Free-running mode (FRUN = 1): After START bit becomes "1" and TXENB bit is "1", frame synchronous signal starts to output when transmission FIFO is not empty. From the 2nd time, it outputs frame synchronous signal with the frame rate determined by the register setting. If transfer FIFO is empty, empty frame is output at the same time of frame synchronous signal output. Serial data of the empty frame is able to be set to "0" or "1" by the register setting.	 Free-running mode (FRUN = 1): The frame rate determined by the register setting inputs frame synchronous signal. If transmission FIFO is empty at inputting frame synchronous signal with START bit is "1" and TXENB bit is "1", empty frame is output. Serial data of the empty frame is able to be set to "0" or "1" by the register setting. Burst mode (FRUN=0): When START bit is "1" and TXENB bit is "1" and TXENB bit is "1"
		Burst mode (FRUN = 0): When START bit is "1" and TXENB bit is "1", frame synchronous signal is output if transfer FIFO is not empty. Always confirm transmission FIFO status at the end of 1 frame output or at idle to output the signal if transfer FIFO is not empty.	"1", 1 frame is output every time frame synchronous signal is input. When transmission FIFO is empty at the time of frame synchronous signal input, empty frame is output.
	Stop	At the time of stop, transmission FIFO becomes empty with having no data transfer from internal memory to I2S transmission FIFO. To maintain START bit to "1" TXENB = "1": Keep outputting frame synchronous signal in the free-running mode. When transmission FIFO becomes empty, empty frame is output; however, do not output frame synchronous signal in the burst mode. Output empty frame bit to serial data bus. TXENB = "0": When "0" is written to TXENB, transmission FIFO becomes empty that the data in the FIFO at writing "0" is not sent. Although frame synchronous signal continues outputting in the free-running mode, serial bus becomes in high impedance state. In the burst mode, frame synchronous signal is not output and serial data bus becomes in high impedance state.	 To maintain START bit to "1" TXENB = "1": Output empty frame data to serial bus. TXENB = "0": Write "0" to TXENB, then transmission FIFO becomes empty that the data in the FIFO at writing "0" is not sent. Data writing to transmission FIFO and transmission frame detection are stop. Serial data bus becomes in high impedance state. To make START bit "0" Write "0" to START bit, then transmission FIFO becomes empty. Writing to transmission FIFO and detection of transmission frame synchronous signal are stop regardless of TXENB setting.
		To make START bit "0" Write "0" to START bit, then transmission FIFO becomes empty. Stop clock supply to the serial control part regardless of TXENB setting, and do not output clock to external part. Frame synchronous signal output should also be stopped. Serial data bus becomes in high impedance state.	

Transfer O setting	Operation	Master mode (MSMD = 1)	Slave mode (MSMD = 0)
Ab	·	with having it empty, empty frame is output. When writing to transmission FIFO occurs with having it full, set TXOVR to "1".	When reading to transmission FIFO occurs with having it empty, empty frame is output. However do not set TXUDR to "1" for the 1st output frame after bit becomes START = "1" and TXENB = "1". When writing to transmission FIFO occurs with having it full, set TXOVR to "1". If it is not input with the frame rate defined frame synchronous signal in the free-running mode, set FERR bit of the STATUS register to "1". If the next frame synchronous signal is input before completing 1 frame transmission in the burst mode, set FERR bit of the STATUS register to "1"

Note:

1. TXDIS and RXDIS are for setting to enable and disable transmission/reception of CNTREG register.

Start, TXENB, and RXENB are operation control bits of OPRREG register.
 Empty frame bit is determined by MSKB of CNTREG register.

Reception only mode

Transfer setting	Operation	Master mode (MSMD = 1)	Slave mode (MSMD = 0)
Reception only TXDIS = 1 RXDIS = 0	Start	Frame synchronous signal starts to output after START bit becomes "1" and TXENB bit is "1" when transmission FIFO is not empty. From the 2nd time, output frame synchronous signal with the frame rate determined by the register setting.	 Free-running mode (FRUN = 1): When START bit is "1" and RXENB bit is "1", input frame synchronous signal with the frame rate determined by the register setting. Frame should be received every time the signal is input. Burst mode (FRUN = 0): When STAPT bits in the LEVEND Life.
		Burst mode (FRUN = 0): When START bit is "1" and RXENB bit is "1", output frame synchronous signal to receive frame if reception FIFO is not full. If the FIFO is full, the signal does not output.	When START bit is "1" and RXENB bit is "1", perform frame reception every time frame synchronous signal is input. The signal is input with less speed than the frame rate in the free-running mode.
	Stop	At the time of stop, frame is not imported from serial bus even though reception FIFO is empty in the condition that data transfer from I2S reception FIFO to internal memory is not required.	To maintain START bit to "1" Reception FIFO becomes empty by "0" writing to RXENB. Ignore the input frame synchronous signal, and do not receive the frame.
		To maintain START bit to "1" Write "0" to RXENB and empty reception FIFO. Although frame synchronous signal is kept outputting in the free-running mode, frame is not received. In the burst mode, frame is not received and the signal is not output.	To make the START bit "0" Write "0" to the START bit, then reception FIFO becomes empty. Ignore the input frame synchronous signal regardless of RXENB setting, and do not receive the frame.
		To make START bit "0" Write "0" to START bit, then reception FIFO becomes empty. Clock supply to the serial control part stops regardless of RXENB setting, and I2S_SCKx supply to the external part is stop as well.	
	Abnormality	When writing to reception FIFO occurs with having it full, set RXOVR of the STATUS register to "1". When read access to reception FIFO occurs with having it empty, set RXUDR of the STATUS register to "1".	 When writing to reception FIFO occurs with having it full, set RXOVR of the STATUS register to "1". When read access to reception FIFO occurs with having it empty, set RXUDR of the STATUS register to "1". Free-running mode: If frame synchronous signal is not input with the frame rate defined by the register setting, set FERR bit of the STATUS register to "1".
Note:			Burst mode: If the next frame synchronous signal is input during 1 frame reception, set FERR bit of the STATUS register to "1".

Note:

1. TXDIS and RXDIS are for setting to enable and disable transmission/reception of CNTREG register.

2. Start, TXENB, and RXENB are operation control bits of OPRREG register.

Transfer setting	Operation	Master mode (MSMD = 1)	Slave mode (MSMD = 0)
Simultaneous	Start	Free-running mode (FRUN = 1):	Free-running mode (FRUN = 1):
transfer	Start	Status of START = 1, TXENB = 1, and	Status of START = 1, TXENB = 1, and
TXDIS $= 0$		RXENB = 1:	RXENB = 0:
RXDIS = 0		The same operation as transmission only	The same operation as transmission only
		mode.	mode.
		Status of $START = 1$, $TXENB = 0$, and	Status of $START = 1$, $TXENB = 0$, and
		$\mathbf{RXENB} = 1$:	RXENB = 1:
		The same operation as reception only	The same operation as reception only
		mode.	mode.
		Status of $START = 1$, $TXENB = 1$, and	Status of $START = 1$, $TXENB = 1$, and
		$\mathbf{RXENB} = 1$:	$\mathbf{RXENB} = 1$:
		Frame synchronous signal is output from	
		the state that transmission FIFO is not	the frame rate defined by the register
		empty and reception FIFO is not full.	setting; at the same time, output empty
		Then output frame synchronous signal	frame if transmission FIFO is empty. Its
		with the frame rate defined by the	serial data is able to be set to "0" or "1" at
		register setting; at the same time, output	the register setting. Every time frame
		empty frame if reception FIFO is empty. Empty frame's serial data is able to be	synchronous signal is input, receive frame.
		set to "0" or "1" at the register setting.	Princt mode (EDUN $-$ 0)
		Every time frame synchronous signal is	Burst mode (FRUN = 0): Every time frame synchronous signal is input
		output, receive frame.	with START bit is "1", transmission and
		output, receive frame.	reception for 1 frame is performed. When
		Burst mode (FRUN = 0):	the signal is input, output empty frame if
		Status of START = 1, TXENB = 1, and	transmission FIFO is empty.
		RXENB = 0:	
		The same operation as transmission only	
		mode.	
		Status of $START = 1$, $TXENB = 0$, and	
		RXENB = 1:	
		The same operation as reception only	
		mode.	
		Status of $START = 1$, $TXENB = 1$, and	
		$\mathbf{RXENB} = 1$:	
		Frame synchronous signal is output from	
		the state that transmission FIFO is not	
		empty and reception FIFO is not full.	
		After completion of 1 frame output or at	
		idle state,	
		always confirm transmission/reception	
		FIFO status. If transmission FIFO is	
		not empty and reception FIFO is not full,	
		output frame synchronous signal to	
		perform frame transmission/reception.	

Transfer setting	Operation	Master mode (MSMD = 1)	Slave mode (MSMD = 0)
	Stop	 Stop operation has following states: Transmission stop: Transmission FIFO becomes empty without sending data from internal memory to I2S transmission FIFO. Reception stop: Data does not need to be transferred from I2S reception FIFO to internal memory. To maintain START bit to ''1'' Keep outputting frame synchronous signal in the free-running mode. In the burst mode, do not output the signal when transmission FIFO becomes empty. Transmission stop: TXENB = 1: Keep outputting empty frame bit when transmission FIFO becomes empty. TXENB = 0: Transmission FIFO becomes empty and transmission serial data bus becomes in high impedance. Do not send the data in transmission FIFO at writing '0'' to TXENB. Writing to transmission FIFO stops. Reception stop: Write '0'' to RXENB, then reception FIFO becomes empty and frame reception operation stops. To make START bit ''0'' Write '0'' to START bit, then transmission/reception FIFO becomes empty. The clock supply to the internal serial control part stops regardless of TXENB and RXENB statuses as well as I2S_SCKX output to the external part and frame synchronous signal output. 	 To maintain START bit to "1" Transmission stop: Keep outputting empty frame bit after transmission FIFO becomes empty in order to maintain this bit to TXENB = 1. When the value is changed to "0", transmission FIFO becomes empty and transmission serial data bus becomes in high impedance. Do not send the data in transmission FIFO at writing "0" to TXENB. Stop writing to transmission FIFO. Reception stop: Write "0" to RXENB, then reception FIFO becomes empty and frame reception operation stops. To make START bit "0" Write "0" to START bit, then transmission/reception FIFO becomes empty. Stop transmission/ reception regardless of TXENB and RXENB statuses.
	Abnormality	When reading to transmission FIFO occurs with having it empty, output empty frame bit. When writing to transmission FIFO occurs with having it full, set TXOVR to "1". When read access to reception FIFO occurs with having it empty, set RXUDR of the STATUS register to "1". When writing to reception FIFO occurs with having it full, set RXOVR of the STATUS register to "1".	When reading to transmission FIFO occurs with having it empty, output empty frame bit. When writing to transmission FIFO occurs with having it full, set TXOVR to "1". When read access to reception FIFO occurs with having it empty, set RXUDR of the STATUS register to "1". When writing to reception FIFO occurs with having it full, set RXOVR of the STATUS register to "1". If it is not input with the frame rate defined frame synchronous signal in the free-running mode, set FERR bit of the STATUS register to "1". If the next frame synchronous signal is input before completing 1 frame transmission in the burst mode, set FERR bit of the STATUS register to "1".

Note:

1. TXDIS and RXDIS are for setting to enable and disable transmission/reception of CNTREG register.

2. Start, TXENB, and RXENB are operation control bits of OPRREG register.

3. Empty frame bit is determined by MSKB of CNTREG register.

17.7.3. Frame construction

This module supports frame format of multiplexer channel construction. Frame is able to be set to 1 or 2 sub frames; moreover, number of each frame's channel and word length are able to be set individually.

17.7.3.1. 1 sub frame construction

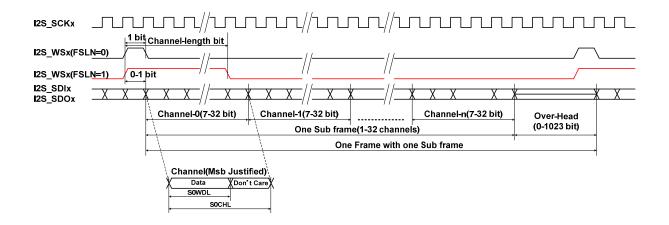
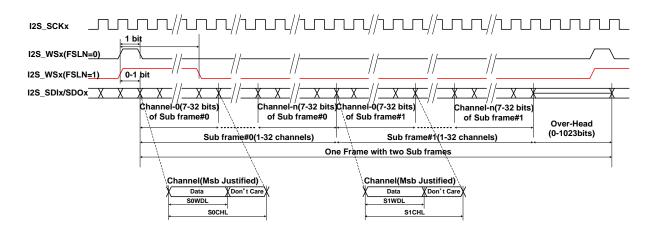


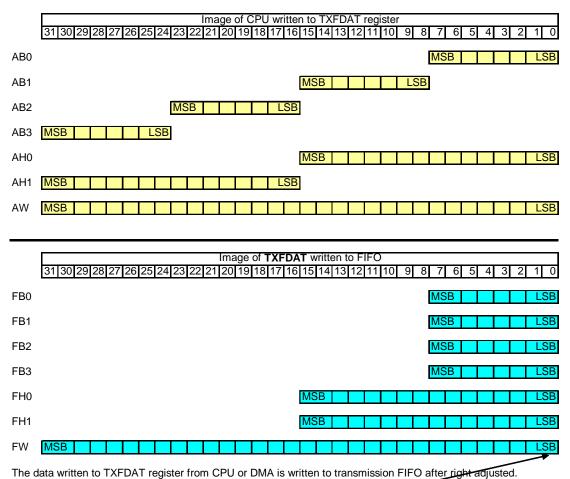
Figure 17-2 1 sub frame composite frame

Description

- 1. When SBFN bit of CNTREG register is "0", frame becomes 1 sub frame composite.
- 2. Number of channel of 1 sub frame is determined by S0CHN of MC0REG register. Up to 32 channels are settable.
- 3. Each channel bit length (word length) is determined by S0WDL of MC0REG register.
- 4. Sub frame channel starts from 0th, and each channel is settable to valid/invalid with the corresponding bit of MC1REG register. Transmission/Reception of data is not performed to invalid channel.
- 5 Dummy bit can be inserted behind sub frame by setting OVHD of CNTREG register. 0-1023 bit are insertable.
- 6. Polarity of I2S_WSx is set with FSPL bit of CNTREG register.
- 7. Pulse width of I2S_WSx can be set to 1 bit or 1 word length by setting FSLN bit of CNTREG register.
- 8. Timing from the edge I2S_WSx becomes valid to the first bit of frame is settable to "0" or "1" bit.
- 9. In this construction, setting of S1CHN of MC0REG register, S1WDL register and MC2REG register are ignored.

17.7.3.2. 2 sub frame construction




Figure 17-3 2 sub frame composite frame

Description

- 1. When SBFN bit of CNTREG register is "1", frame becomes 2 sub frame composite that first sub frame is 0 and the next one is 1.
- 2. Set number of channel of sub frame 0 to SOCHN of MCOREG register, and set number of sub frame 1 channel to S1CHN of the register. Those numbers of channel are individual that they do not need to have the same channel. Up to 32 channels are settable.
- 3. Channel bit length (word length) of sub frame 0 is determined by S0WDL of MC0REG register. For sub frame 1, they are determined by S1WDL of MC0REG register. Since channel bit length of the sub frame is individual, those channels (word length) do not need to be the same.
- 4. Sub frame channel starts from 0th. Each channel of sub frame 0 is settable to valid/invalid with the corresponding bit of MC1REG register, and corresponding bit of MC2REG register for sub frame 1. Transmission/Reception of data is not performed to invalid channel.
- 5 Dummy bit can be inserted behind sub frame 1 by setting OVHD of CNTREG. 0-1023 bit are insertable.
- 6. Polarity of I2S_WSx is set to FSPL bit of CNTREG register.
- 7. Pulse width of I2S_WSx can be set to 1 bit or 1 channel length by setting FSLN bit of CNTREG register. Channel length setting of 1 channel is determined by the channel length of sub frame 0.
- 8. Timing from the edge I2S_WSx becomes valid to the first bit of frame is settable to "0" or "1" bit.

17.7.3.3. Bit alignment

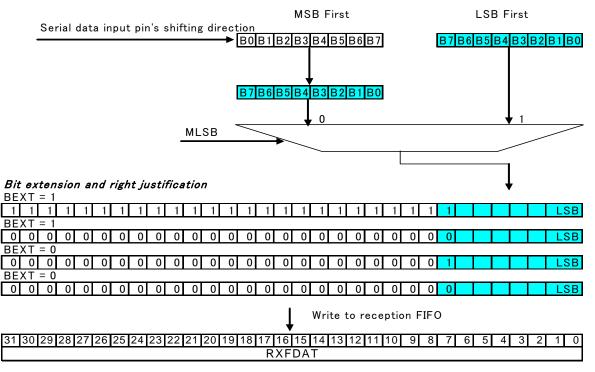
(1) Transmission word alignment

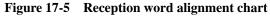
S0WDL and S1WDL counts to the left from this bit When S0WDL and S1WDL are 3, Transmission w

SOWDL and S1WDL are 7,

Figure 17-4 Transmission word alignment chart

. . .


When transmission is performed with serial bus, word is sent from M bit when CNTREG register's MLSB is "0" and from L bit when the value is "1". When channel length (set to S0CHL and S1CHL) is longer than the word length (set to S0WDL and S1WDL), remaining bit in the channel becomes CNTREG[MSKB]. If channel length is shorter than the word's, setting is prohibited.

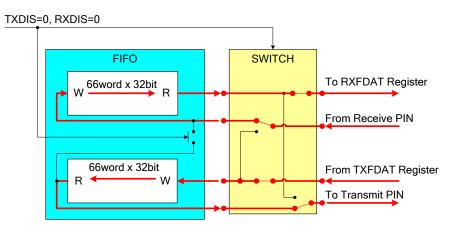

Note:

AB0, AB1, AB2, AB3, AH0, AH1, and AW on the above chart indicate byte 0, byte 1, byte 2, byte 3, half word 0, half word 1, and word at write accessing to TXFDAT on AHB bus. Each FB0, FB1, FB2, FB3, FH0, FH1, and FW indicate AB0, AB1, AB2, AB3, AH0, AH1, and AW are written to transmission FIFO after they are right justified.

ransmission w

(2) Reception word alignment

This chart shows word alignment example of when word length is 8.


The word received from serial bus is always written to reception FIFO after right-justified.

Therefore, read access should be performed from AHB bus to RXFDAT in order to read as follows:

Word length

- 8 or less: Byte 0
- 9 16: Half word 0
- 17 32: All words.

17.7.4. FIFO structure and description

Simultaneous transmission and reception mode (TXDIS = 0 and RXDIS = 0)

Figure 17-6 Simultaneous transmission and reception mode data flow

With setting TXDIS = 0 and RXDIS = 0 of CNTREG register, the mode becomes simultaneous transmission and reception mode which operates in 66word x 32bit transmission FIFO and reception FIFO.

Transmission only mode (TXDIS = 0 and RXDIS = 1)

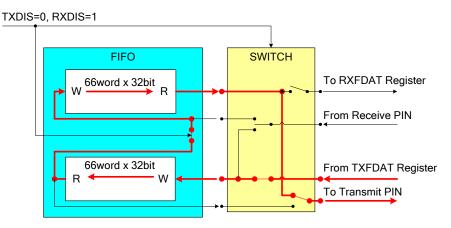


Figure 17-7 Transmission only mode data flow

With setting TXDIS = 0 and RXDIS = 1 of CNTREG register, the mode becomes transmission only mode which operates in 132word x 32bit transmission FIFO, and reception is not performed.

Reception only mode (TXDIS = 1 and RXDIS = 0)

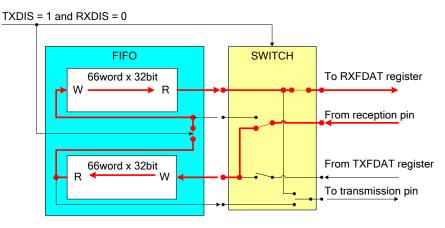


Figure 17-8 Reception only mode data flow

With setting TXDIS = 1 and RXDIS = 0 of CNTREG register, the mode becomes reception only mode which operates in 132word x 32bit reception FIFO, and transmission is not performed.

FUĴÎTSU

18. UART interface

This chapter describes function and operation of UART.

18.1. Outline

UART is asynchronous transmission/reception serial interface which is controllable by the program. This LSI equips 6 channels of UART.

18.2. Feature

UART has following features:

- Programmable baud rate (baud rate is selectable arbitrarily based on APB clock)
- 16 byte transmission FIFO and 16 byte reception FIFO

18.3. Block diagram

Figure 18-1 shows block diagram of UART.

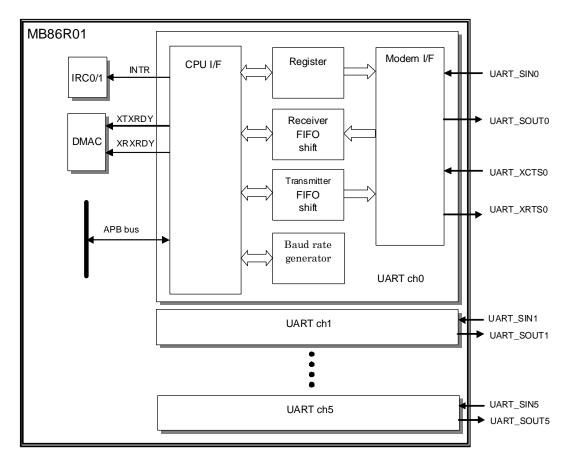


Figure 18-1 Block diagram of UART

18.4. Related pin

UART uses the following pins.

Table 18-1	UART related pin		
Pin	Direction	Qty.	Description
UART_SIN0 UART_SIN1 UART_SIN2 UART_SIN3 UART_SIN4 UART_SIN5	IN	6	Input pin of serial data. The umber at the end of pin shows channel number of UART.
UART_SOUT0 UART_SOUT1 UART_SOUT2 UART_SOUT3 UART_SOUT4 UART_SOUT5	OUT	6	Output pin of serial data. The number at the end of pin shows channel number of UART.
UART_XCTS0	IN	1	Input pin of modem control signal, CLEAR TO SEND. Only channel 0 of UART has this pin.
UART_XRTS0	OUT	1	Output pin of modem control signal, REQUEST TO SEND Only channel 0 of UART has this pin.

18.5. Supply clock

APB clock is supplied to UART. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

18.6. Register

This section describes UART interface module's register.

18.6.1. Register list

The LSI has 6 channels (3 dedicated channels and 3 channels of pin multiplex function) of UART interface unit, and each module has the register shown in Table 18-2.

Channel	3-2 UART rea	Register	Description						
UART ch0	FFFE1000h	URTORFR	Reception FIFO register (read only) that is valid in $DLAB = 0$						
		URT0TFR	Transmission FIFO register (write only) that is valid in $DLAB = 0$						
		URT0DLL	Divider latch (low order byte) register that is valid in $DLAB = 1$						
	FFFE1004h	URT0IER	Interrupt enable that is valid in $DLAB = 0$.						
		URT0DLM	Divider latch (high order byte) register that is valid in $DLAB = 1$						
	FFFE1008h	URT0IIR	Interrupt ID register (read only)						
		URT0FCR	FIFO control (write only)						
	FFFE100Ch	URT0LCR	Line control register						
	FFFE1010h	URT0MCR	Modem control register						
	FFFE1014h	URT0LSR	Line status register (read only)						
	FFFE1018h	URT0MSR	Modem status register (read only)						
UART ch1	FFFE2000h	URT1RFR	Reception FIFO register (read only) that is valid in $DLAB = 0$						
		URT1TFR	Transmission FIFO register (write only) that is valid in $DLAB = 0$						
		URT1DLL	Divider latch register (low order byte) that is valid in DLAB = 1						
	FFFE2004h	URT1IER	Interrupt enable that is valid in $DLAB = 0$.						
		URT1DLM	Divider latch (high order byte) register that is valid in $DLAB = 1$						
	FFFE2008h	URT1IIR	Interrupt ID register (read only)						
		URT1FCR	FIFO control (write only)						
	FFFE200Ch	URT1LCR	Line control register						
	FFFE2010h	URT1MCR	Modem control register						
	FFFE2014h	URT1LSR	Line status register (read only)						
	FFFE2018h	URT1MSR	Modem status register (read only)						
UART ch2	FFF50000h	URT2RFR	Reception FIFO register (read only) that is valid in $DLAB = 0$						
		URT2TFR	Transmission FIFO register (write only) that is valid in DLAB = 0						
		URT2DLL	Divider latch (low order byte) register that is valid in $DLAB = 1$						
	FFF50004h	URT2IER	Interrupt enable that is valid in $DLAB = 0$.						
		URT2DLM	Divider latch (high order byte) register that is valid in $DLAB = 1$						
	FFF50008h	URT2IIR	Interrupt ID register (read only)						
		URT2FCR	FIFO control (write only)						
	FFF5000Ch	URT2LCR	Line control register						
	FFF50010h	URT2MCR	Modem control register						
	FFF50014h	URT2LSR	Line status register (read only)						
	FFF50018h	URT2MSR	Modem status register (read only)						
UART ch3	FFF51000h	URT3RFR	Reception FIFO register (read only) that is valid in DLAB = 0						
		URT3TFR	Transmission FIFO register (write only) that is valid in DLAB = 0						
		URT3DLL	DLL Divider latch (low order byte) register that is valid in DLAB = 1						

Table 18-2UART register list

Channel	Address	Register	Description
UART ch3	FFF51004h	URT3IER	Interrupt enable that is valid in $DLAB = 0$.
		URT3DLM	Divider latch (high order byte) register that is valid in DLAB = 1
	FFF51008h	URT3IIR	Interrupt ID register (read only)
		URT3FCR	FIFO control (write only)
	FFF5100Ch	URT3LCR	Line control register
	FFF51010h	URT3MCR	Modem control register
	FFF51014h	URT3LSR	Line status register (read only)
	FFF51018h	URT3MSR	Modem status register (read only)
UART ch4	FFF43000h	URT4RFR	Reception FIFO register (read only) that is valid in $DLAB = 0$
		URT4TFR	Transmission FIFO register (write only) that is valid in $DLAB = 0$
		URT4DLL	Divider latch (low order byte) register that is valid in DLAB = 1
	FFF43004h	URT4IER	Interrupt enable that is valid in DLAB = 0.
		URT4DLM	Divider latch (high order byte) register that is valid in $DLAB = 1$
	FFF43008h	URT4IIR	Interrupt ID register (read only)
		URT4FCR	FIFO control (write only)
	FFF4300Ch	URT4LCR	Line control register
	FFF43010h	URT4MCR	Modem control register
	FFF43014h	URT4LSR	Line status register (read only)
	FFF43018h	URT4MSR	Modem status register (read only)
UART ch5	FFF44000h	URT5RFR	Reception FIFO register (read only) that is valid in DLAB = 0
		URT5TFR	Transmission FIFO register (write only) that is valid in DLAB = 0
		URT5DLL	Divider latch (low order byte) register that is valid in DLAB = 1
	FFF44004h	URT5IER	Interrupt enable that is valid in $DLAB = 0$.
		URT5DLM	Divider latch (high order byte) register that is valid in DLAB = 1
	FFF44008h	URT5IIR	Interrupt ID register (read only)
		URT5FCR	FIFO control (write only)
	FFF4400Ch	URT5LCR	Line control register
	FFF44010h	URT5MCR	Modem control register
	FFF44014h	URT5LSR	Line status register (read only)
	FFF44018h	URT5MSR	Modem status register (read only)

DLAB: Bit7 of Line control register (LCR)

Note:

Although UART's register length is 8 bit, each register except RFR, TFR, and DLL should be accessed in 32 bit.

PER, TFR, and DLL are able to be accessed in both 32 bit and 8bit lengths; however, note that 8 bit length access is different since register address is endian dependent.

Description format of register

Following format is used for description of register's each bit in "18.6.2 Reception FIFO register (URTxRFR)" to "18.6.11 Divider latch register (URTxDLL&URTxDLM)".

Address							Bas	e addre	ess + 0	ffset						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

18.6.2. Reception FIFO register (URTxRFR)

Address					_) + 00h) + 00h (Read	ch4	FFF4	_	+ 00h	ch5 :		-			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)							RFR	R[7:0]			
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0

Bit No.	Bit name	Function
31:8	Unused	Reserved bit
7-0	RFR[7:0]	This is FIFO register that is able to maintain up to 16 byte. Reception data is acquired and maintained at the end of reception sequence. This register is able to proceed system reset as well as reset by FCR bit 1 (RxF RST.)
	[]	RFR register becomes valid at DLAB = 0, and DLL register is assigned at DLAB = 1. RFR register becomes valid only at reading register, and data is written to TFR register (at DLAB = 0) or DLL register (at DLAB = 1) according to the setting value of DLAB when writing.

18.6.3. Transmission FIFO register (URTxTFR)

Address					_) + 00h) + 00h			_				-			
		(Writing is enabled only at DLAB = 0)														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)							TFR	[7:0]			
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0

Bit No.	Bit name	Function
31:8	Unused	Reserved bit (input "0" at writing)
7:0	TFR[7:0]	This is FIFO register that is able to maintain up to 16 byte. Data is maintained in this register until being transmitted to the Transmission shift register. This register is able to proceed system reset as well as reset by FCR bit 2 (RxF RST.) This register is write only; however, reading operation reads RFR register (at DLAB = 0) or DLL register (at DLAB = 1) according to setting value of DLAB.

18.6.4. Interrupt enable register (URTxIER)

Address					_				_				0000 + 4000 +			
						(Acces	sing is	enable	d only	at DLA	$\mathbf{A}\mathbf{B}=0)$					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)					(Rese	erved)		EDSSI	ELSI	ETBEI	ERBFI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0

Bit No.	Bit name	Function
31:4	Unused	Reserved bit (input "0" at writing)
3	EDSSI	Enable Modem Status Interrupt When EDSSI is set to "1" and bit3:0 of the Modem status register is set, interrupt occurs.
2	ELSI	Enable Receiver Status Interrupt When ELSI is set to "1" and bit4:1 of the Line status register is set, interrupt occurs.
1	ETBEI	Enable Transmitter FIFO Register Empty Interrupt After ETBEI is set to "1", interrupt occurs when Transfer FIFO register becomes empty.
0	ERBFI	Enable Receiver FIFO Register When ERBFI is set to "1" and reception FIFO reaches to the trigger level, interrupt occurs. (Interrupt also occurs when character time-out occurs.)

Interrupt can be disabled by setting "0" to all bits of bit3:0.

All interrupt factors of the bit set "1" in bit3:0 become valid.

18.6.5. Interrupt ID register (URTxIIR)

Address) + 08h) + 08h										
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				FIFO ST1	FIFO ST0	(Rese	erved)	ID2	ID1	ID0	NINT
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	1	1	0	0	0	0	0	1

Bit No.	Bit name	Function
31:8	Unused	Reserved bit (input "0" at writing)
7:6	FIFOLO	FIFO status Fixed to "11"
5:4		"00"
3:0	ID2:0, NINT	Interrupt setting0001: No interrupt0110: Reception line status(1) Top priority0100: Reception data existed(2)1100: Time-out(2)0010: Transmission FIFO is empty (3)0000: Modem status(4)

* Bit7:0 = C1h, after the reset

* Numerical value in () is priority level

When character time-out interrupt occurs with having received data, ID2:0, NINT is changed from 0100 to 1100. Interrupt signal (INTR) is cleared by the following operation.

Priority level:

- (1) Read Line status register (LSR)
- (2) Read reception FIFO
- (3) Read Interrupt ID register (IIR) or write to transmission FIFO
- (4) Read Modem status register (MSR)

18.6.6. FIFO control register (URTxFCR)

Address					_) + 08h) + 08h			-				-			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Res	erved)							
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Dage	erved)				DCVD1	RCVR0	(Dasa	erved)	DMA	TxF	RxF	(Reserv
Iname				(Rese	(iveu)				KC V KI	KC VK0	(Rese	(iveu)	MODE	RST	RST	ed)
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0

Bit No.	Bit name	Function
31:8	Unused	Reserved bit (input "0" at writing)
7:6	RCVR1:0	Reception FIFO's trigger level 00: 1 byte 01: 4 byte 10: 8 byte 11: 14 byte
5:4	Unused	Reserved bit
3	DMA MODE	DMA transfer mode (mode of XTXRDY and XRXRDY pins) 0: Single transfer mode 1: Demand transfer mode
2	TxF RST	Transmission FIFO reset 1: Reset
1	RxF RST	Reception FIFO reset 1: Reset
0	Unused	Reserved bit

* Bit7:0 = 00h, after reset

18.6.7. Line control register (URTxLCR)

Address					_				_			_	_0000 + 4000 +			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				DLAB	SB	SP	EPS	PEN	STB	WLS1	WLS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0

Bit No.	Bit name	Function
31:8	Unused	Reserved bit (input "0" at writing)
7	DLAB	Divisor Latch Access Bit (divider latch access bit) 0: Disable Reception FIFO register reads with address 0 Transmission FIFO register writes with address 0 IER register reads and writes with address 1 1: Enable DLL register reads and writes with address 0 DLM register reads and writes with address 1
6	SB	Set Break (break transmission) 1: The SOUT signal forcibly becomes "0"
5	SP	 Stick Parity (fixed parity) 0: Parity bit is determined by EPS and PEN 1: Parity bit is fixed as follows depending on the status of EPS and PEN (checked at transmission, generation, and reception) Parity is "1" at PEN = 1 and EPS = 0 Parity is "0" at PEN = 1 and EPS = 1
4	EPS	Even Parity Select (parity selection) 0: Odd parity 1: Even parity
3	PEN	Parity Enable (parity enable) 0: Parity is not sent nor checked 1: Parity is sent and checked Parity bit is added to end of data area, and stop bit comes last
2	STB	Number of Stop Bit (stop bit length) 0: 1 bit 1: 1.5 bit (data length: 5) 2 bit (data length: 6 ~ 8)
1:0	WLS1:0	Word Length Select (transmission/reception data length) 00: 5 bit 01: 6 bit 10: 7 bit 11: 8 bit

* Bit7:0 = 00h, after reset

18.6.8. Modem control register (URTxMCR)

Address					_				_	0000 + 4000 +						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				(Reserved)	LOOP	(Rese	erved)	RTS	(*1)
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0

*1) (Reserved)

Bit No.	Bit name	Function
31:8	Unused	Reserved bit (input "0" at writing)
7:5	Unused	Reserved bit (input "0" at writing)
4	LOOP	 Loop Back Mode (self-diagnostic mode) When loop is set to "1", following is performed. 1. SOUT becomes "1" 2. SIN is separated from input Shift register of reception 3. Transmission shift register output is connected to input of the Reception shift register 4. Modem status is separated (NCTS, NDSR, NDCD, and NRI) 5. Modem control signal is connected to modem status input CTS – RTS
3	Unused	Reserved bit
2	Unused	Reserved bit
1	RTS	Control signal "1" makes output pin active.
0	Unused	Reserved bit

* Bit7:0 = 00h, after reset

18.6.9. Line status register (URTxLSR)

Address					_) + 14h) + 14h			_				•			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Res	erved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				ERRF	TEMT	THRE	BI	FE	PE	OE	DR
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	1	1	0	0	0	0	0

Bit No.	Bit name	Function
31:8	Unused	Reserved bit
7	ERRF	Error in RCVR FIFO (error in reception FIFO) This bit is set even 1 error of parity, flaming, or break detection is in reception FIFO. If data including error (except the one set ERRF flag) is not in reception FIFO at reading LSR register, this is reset.
6	TEMT	Transmitter Empty (transmission shift register empty) When both Transmission shift register and Transmission FIFO register become empty, TEMT is set to "1".
5	THRE	Transmitter FIFO Register Empty (transmission register empty) When Transmission FIFO register is empty and ready to accept new data, THRE is set to "1". This bit is cleared at sending data to Transmission shift register.
4	BI	Break Interrupt (break reception) This bit is set when SIN is held in "0" more than transmission time (start bit + data bit + parity + stop bit.) BI is reset by CPU reading this register.
3	FE	Framing Error (flaming error) This bit is set when reception data does not have valid stop bit. FE is reset by CPU reading this register.
2	PE	Parity Error (parity error) This bit is set when reception data does not have valid parity bit. PE is reset by CPU reading this register.
1	OE	Overrun Error (overrunning error) This bit is set when reception FIFO is full and receives the next reception data. OE is reset by CPU reading this register.
0	DR	Data Ready (reception data existed) This bit shows 1 byte or more of data is in FIFO. This bit is set when data is in FIFO and reset after reading all data in FIFO.

* Bit7:0 = 60h, after reset

18.6.10. Modem status register (URTxMSR)

Address					_) + 18h) + 18h			_				-			
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				(Reserved	l)	CTS		Reserved)	DCTS
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0

Bit No.	Bit name	Function
31:8	Unused	Reserved bit
7	Unused	Reserved bit
6	Unused	Reserved bit
5	Unused	Reserved bit
4	CTS	Clear To Send Loop = 0: Inversed input signal, XCTS is indicated Loop = 1: It is equal to RTS of MCR
3	Unused	Reserved bit
2	Unused	Reserved bit
1	Unused	Reserved bit
0	DCTS	Delta Clear To Send This bit is set when CTS signal changes after the last reading by CPU. The bit is reset by reading this register.

* Bit7:0 = x0h, after reset

Bit4 is monitor bit of external pin

18.6.11. Divider latch register (URTxDLL&URTxDLM)

This register is frequency dividing latch to generate necessary baud rate from clock input. Frequency diving latch consists of 16 bit, DLM (high order byte) and DLL (low order byte.)

[DLL]

			ch0	: FFF	E_1000) + 00h	ch1	: FFFE	2000	+ 00h	ch2 :	FFF5_	0000 +	00h		
Address			ch3	: FFF	5_1000) + 00h	ch4	FFF4	_3000 -	+ 00h	ch5 :	FFF4_4	4000 +	00h		
						(Acces	sing is	enable	d only	at DLA	$\mathbf{AB} = 1$					
Bit	31	30	29	28	27	26	22	21	20	19	18	17	16			
Name								(Rese	erved)							
R/W	R/W															R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)							DL	[7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0

[DLM]

Address					_				_		ch2 : ch5 : 2		•			
						(Acces	sing is	enable	d only :	at DLA	B = 1)))				
Bit	31 30 29 28 27 26 25 24 23 22 21 20 19 18														17	16
Name								(Rese	erved)							
R/W	R/W															R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)							DL[15:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0

DLL and DLM are read/written when DLAB bit of LCR is set to "1".

- After the reset, DLL and DLM are 00h
- DLL and DLM values are loaded by writing to either DLL or DLM
- Baud rate is settable in the range that DLM and DLL are FFFFh $\sim 0001 h$

To calculate transfer baud rate

Transfer baud rate (bps) = (APB clock frequency (Hz)/Frequency dividing value)/16

Example of frequency dividing value (DLM and DLL values) and baud rate is shown in Table 18-3.

DLL value	MB86R01 baud rate			
(decimal) (DLM = 0)	APB clock = 41.663(MHz) (external input condition: CLK = 33.33MHz, CRIPM[3:0] = 0011)	The other party's baud rate (error range)		
2170	1200	1200 (100%)		
1085	2400	2400 (100%)		
542	4804	4800 (99.9%)		
271	9609	9600 (99.9%)		
181	14386	14400 (100.1%)		
136	19147	19200 (100.3%)		
90	28933	28800 (99.5%)		
68	38293	38400 (100.3%)		
45	57865	57600 (99.5%)		
23	113215	115200 (101.8%)		

 Table 18-3
 Example of frequency dividing value (DLM and DLL values) and baud rate

Transmission baud rate on the other party and baud rate used by macro are able to receive data properly within the permissible error range. Out of the range causes reception error. Baud rate's permissible error range that macro permits is shown below.

104.1% > Macro baud rate (100%) > 95.3%

When baud rate used by macro is within the reception baud rate's permissible error range of the other party, data is able to be received. Out of the range causes error on the other party side.

After the reset (MR = 1), it takes 1/4 bit of time from setting DLL and DLM to enable start bit detection. Although start bit (SIN = 0) is received in the period, proper start bit detection is not performed.

18.7. UART operation

18.7.1. Example of initial setting

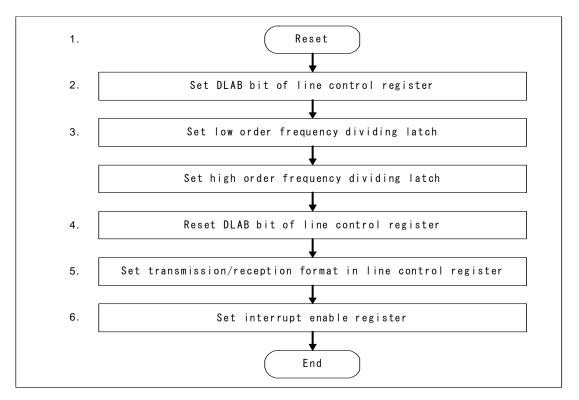


Figure 18-2 Example of initial setting

- 1. After the power-on, macro's each output pin is undefined. Each output pin level becomes the one shown in the table of chapter 5 by inputting "L" to reset (MR) pin.
- 2. Divider latch is able to be accessed by setting "1" to DLAB bit in the Line control register (LCR register.)
- 3. Set baud rate clock (refer to "18.6.11 Divider latch register (URTxDLL&URTxDLM)".)
- 4. Set "0" to DLAB bit in the Line control register.
- 5. Set transmission/reception format by setting the Line control register.
- 6. Control each interrupt by setting the Interrupt enable register (IER register.)

18.7.2. Example of transfer procedure

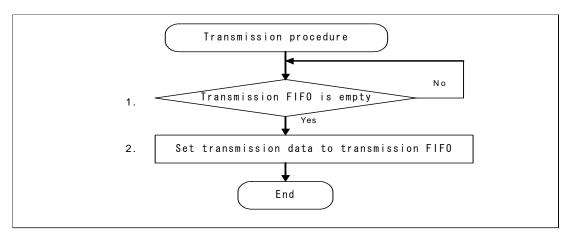


Figure 18-3 Example of transfer procedure

- 1. Check transmission FIFO is empty with following method:
 - a. Polling process of THRE bit in the Line status register (LSR)THRE bit shows transmission FIFO status. When the FIFO is empty, the bit becomes "1".
 - b. Polling process of TEMT bit in the Line status register (LSR)
 TEMT bit shows transmission FIFO and Transmission shift register statuses that data in transmission
 process and empty transmission FIFO are able to be confirmed. When they are empty, TEMT becomes "1".
 - c. Transmission FIFO empty interrupt process

When all data in transmission FIFO is moved to the Transmission shift register, this interrupt occurs. It is able to control approval/prohibition in the Interrupt enable register (URTxIER.)

Note:

During transmission FIFO empty interrupt process, check THRE bit of the LSR is "1" before writing data to transmission FIFO.

- THRE = 1: Transmission FIFO is empty that data is able to be written
- THRE = 0: Transmission FIFO is not empty. Retry from interrupt process to be FIFO empty interrupt status without writing data to transmission FIFO.
- 2. Set transmission data to transmission FIFO. Up to 16 byte is able to be set in the FIFO at a time. In this case, THRE bit of the LSR becomes "0".

Note:

The last written data is deleted when writing data to transmission FIFO while it is full.

18.7.3. Example of reception procedure

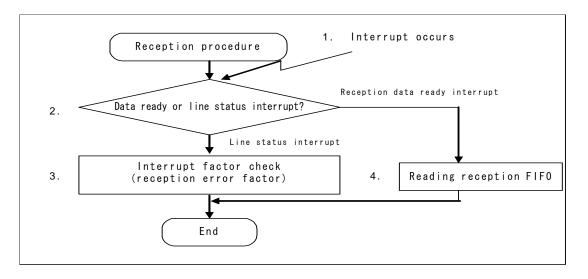


Figure 18-4 Example of reception procedure

1. When certain interrupt is permitted, interrupt occurrence is able to be confirmed with interrupt (INTR) pin (at INTR = "H".)

Moreover, it is confirmed by polling NINT bit in the Interrupt ID register (IIR register) (at NINT = "0".)

- 2. Type of interrupt is able to be observed by confirming ID0, ID1 and ID2 bit in the Interrupt ID register.
- 3. After interrupt type is judged as reception line status interrupt with the process in item 2, reception error information is able to be acquired by reading the Line status register which also releases the interrupt (INTR= "L".)
- 4. After interrupt type is judged as reception data ready interrupt with the process in item 2, read number of character corresponding to the trigger level to acquire reception character. Reception data ready status is also able to be confirmed by referring DR bit in the Line status register. The interrupt is released when data in FIFO becomes less than the trigger level (INTR= "L".)

18.7.4. Basic transmission operation

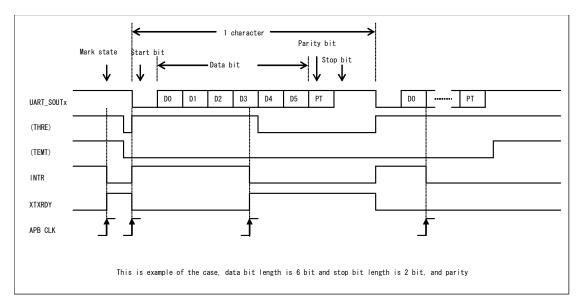


Figure 18-5 Basic transmission operation

When initial reset is completed and transmission data is not written to the Transmission shift register in the transmission control part (mark state), state of "H" level continues applying to serial transmission (SOUT) pin. The data is output from serial transmission (SOUT) pin with adding start bit, parity bit, and stop bit in the transmission control part as shown in Figure 18-5 when transmission data is written from CPU to transmission FIFO.

 $1 \sim 16$ byte of transmission data is able to be consecutively written to transmission FIFO at a time. Transmission FIFO state is able to be confirmed with THRE bit of the LSR register.

When transmission data is written to transmission FIFO though it is full, the last written data is deleted. The data that is already stored in the transmission FIFO is properly transmitted.

THRE bit becomes "0" by writing to transmission FIFO. When the writing data is transferred to the Transmission shift register and FIFO becomes empty, the value becomes "1". If transmission data buffer interrupt is permitted in that time, interrupt (INTR) pin becomes "H" and interrupt occurs. This interrupt is released by writing data to the transmission FIFO again or reading the Interrupt confirmation register.

TEMT bit becomes "0" at the same timing of THRE bit, and the value becomes "1" after transmission of all written data is completed.

XTXRDY is data ready signal that shows possible transmission to DMA controller at using the controller. Single transfer mode is supported when bit 3 of the FCR register is "0" and the demand transfer mode is supported when the bit is "1".

When transmission baud rate used by macro is within the reception baud rate permissible error range, the other party is able to receive data. Out of the range causes reception error on the other party side.

18.7.5. Basic reception operation

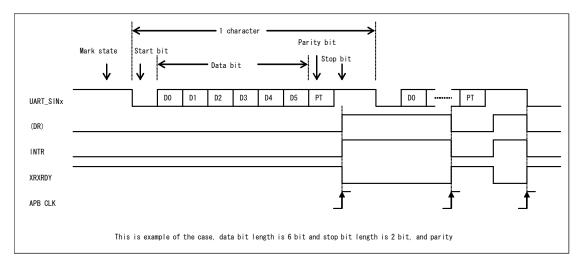


Figure 18-6 Basic reception operation

After detecting received start bit ("L" level) from serial input (SIN) pin, the bit receiving next is regarded as start bit of reception data.

Then, received data is sampled with reception clock, and stop bit is detected after receiving data bit and parity bit. When transmission error occurs during that time, its factor (break detection, flaming error, parity error, and overrunning error) is applied to each data in FIFO, and the status is maintained. Status can be confirmed by CPU at the first data of FIFO.

When reception data ready interrupt is permitted, interrupt (INTR) pin becomes "H" and interrupt occurs by reaching the data in reception FIFO to the trigger level. This interrupt is released when the data in the FIFO becomes less than the trigger level, and interrupt (INTR) pin becomes "L".

XRXRDY is data ready signal that shows possible reception to DMA controller at using the controller. Single transfer mode is supported when bit 3 of the FCR register is "0" and the demand transfer mode is supported when the bit is "1".

When transmission baud rate of the other party and baud rate used by macro are within the reception baud rate permissible error range, data is able to be received properly. Out of the range causes reception error. Baud rate permissible error range that macro permits is as follows.

104.1%	>	Macro baud rate	(100%)	>	95.3%
--------	---	-----------------	--------	---	-------

After reset (MR = 1), the time reaching to enable detection of start bit is 1/4 bit after DLL and DLM are set. Even if start bit (SIN=0) is received during this period, normal start bit detection is not performed.

18.7.6. Line status

THRE flag and TEMT flag

Operation example of THRE flag and TEMT flag of bit 5 and 6 in the Line status register (LSR) is shown in Figure 18-7.

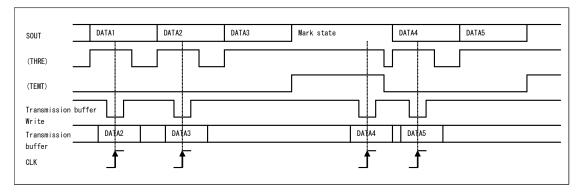


Figure 18-7 Example of operation of THRE flag and TEMT flag

THRE flag = "1" indicates that there is no data in the Transmission FIFO buffer register, and transmission character is able to be written.

TEMT flag becomes "1" when there is no data in the register and Transmission shift register in the transmission control part.

Both flags become "0" at writing "0" to transmission FIFO buffer.

FE flag and BI flag

Operation example of BI flag and of bit 4 and 3 and FE flag in the Line status register (LSR) is shown in Figure 18-8.

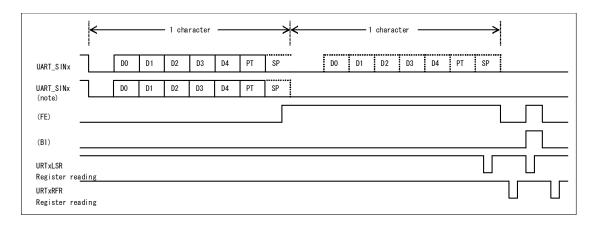


Figure 18-8 Operation example of FE flag and BI flag

If "L" level is received at the stop bit during reception operation, flaming error occurs and FE flag becomes "1". The error flag is reset by reading Line status register.

When "L" level continues during transmission time (start bit, data bit, parity bit, and stop bit) for 1 character, break code is detected. These errors are applied to each data in FIFO, and they are able to be confirmed when CPU reads the first data of FIFO. FE and BI flags are able to be confirmed in the Status register at reading Line status register whose first data includes framing and break detection error. Both flags become "0" by reading Status register.

For the case of break detection error, reception data is stored to FIFO as 0.

When break is detected, macro stops reception, and it restarts the process with detecting SIN's falling edge.

PE flag

Operation example of PE flag of bit 2 in the Line status register (LSR) is shown in Figure 18-9.

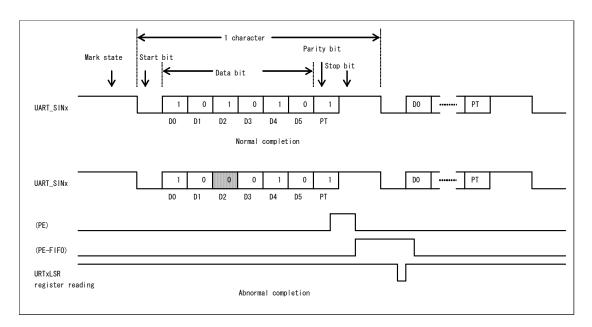
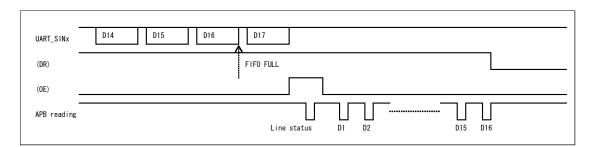
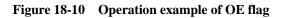


Figure 18-9 Operation example of PE flag (setting even parity)


Parity bit is set to "1" or "0" depending on the number of "1" level bit in the 1 data bit. When it is set to even parity with EPS in the Line control register, the bit is set to "1" or "0" to have total data bit and "1" level parity bit even number. Likewise, when parity bit is set to odd parity, total number of "1" level is set to be odd number.


On reception side, the number of "1" level bit of 1 data including input parity bit is counted, and polarity of the parity set with EPS bit in the Line control register is compared.

For their discrepancy, PE flag of the register becomes "1" by the judgment that problem occurred in transmitting data. Then the flag becomes "0" by reading the Line status register. This error is applied to each data in FIFO, and is able to be confirmed when CPU reads first data of FIFO.

OE flag

Operation example of OE flag of bit 1 in the Line status register (LSR) is shown in Figure 18-10.

When next character is received completely to the Reception shift register in the status that reception FIFO is full, overrun error occurs. In this case, OE flag of the Line status register is set immediately and interrupt occurs (if it is permitted.)

DR flag

Operation example of DR flag of bit 0 in the Line status register (LSR) is shown in Figure 18-11.

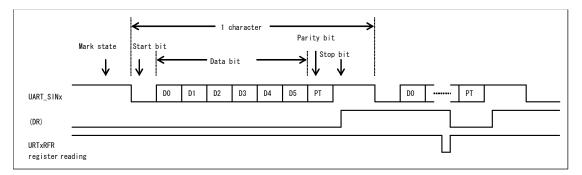


Figure 18-11 Operation example of DR flag

When reception data is received and 1 byte or more of data is stored in reception FIFO, DR flag of the Line status register becomes "1". The flag becomes "0" by reading reception FIFO data and FIFO becomes empty.

ERRF flag

When error (parity, break detection, and flaming) is included in the data stored in reception FIFO, ERRF flag of bit 7 of the Line status register (LSR) is set to "1" during reception operation.

If there is no error data in FIFO except the one set ERRF flag when CPU reads the register, this flag is cleared to "0".

18.7.7. Character time-out interrupt

Character time-out interrupt occurs in the following cases:

- 1 or more data is stored in reception FIFO and the next serial data is still not received after 4 characters of time
- 1 or more data is stored in reception FIFO and CPU still does not read the data after 4 characters of time

When time-out interrupt occurs, INTR pin becomes "H". Moreover, XRXRDY signal becomes "L", showing DMA controller that reception is ready, and requests to read data.

Timer and time-out interrupt are reset by CPU (or DMA controller) reading 1 byte from reception FIFO. If time-out does not occur, it is reset after timer receives new data or CPU (or DMA controller) reads data from reception FIFO.

19. I²C bus interface

This chapter describes function and operation of I²C bus interface.

19.1. Outline

I²C bus is serial bus advocated by Philips Semiconductors (now NXP) that supports data between multiple devices with 2 signals. MB86R01 equips 2 channels of interface corresponding to I²C standard mode (max. 100Kbps)/high-speed mode (max. 400Kbps.) External pin, I2C_SDA0, I2C_SDA1, I2C_SCL0, and I2C SCL1 uses 3.3V exclusive I/O, so that it is able to be used in 3.3V I²C.

I2C_SDA0/I2C_SDA1 are indicated as SDA line, and I2C_SCL0/I2C_SCL1 are indicated as SCL line in this document.

19.2. Feature

I²C has following features:

- Master transmission/reception function
- Slave transmission/reception function
- Arbitration function
- Clock synchronization function
- Slave address detecting function
- General call address detecting function
- Transfer direction detecting function
- Repeat occurrence and detecting function of start condition
- Bus error detecting function
- Corresponding to standard mode (max. 100Kbps)/high-speed mode (max. 400Kbps)

19.3. Block diagram

Figure 19-1 shows block diagram of I^2C .

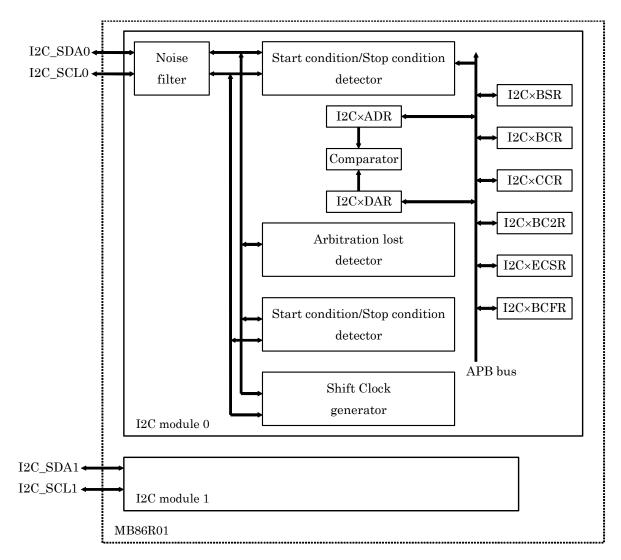


Figure 19-1 Block diagram of I²C

Block function

Each block function is described below.

Block	Description				
Start condition/Stop condition detector	Start condition and Stop condition are detected from transition state of SDA and SCL lines.				
Start condition/Stop condition generator	Start condition and Stop condition are issued from transition state of SDA and SCL lines.				
Arbitration lost detector	Output data to SDA line and input data from SDA line are compared at data transmission. If they are unmatched, arbitration lost occurs.				
Shift clock generator	Timing count of serial data t transfer clock occurrence and output control of SCL line clock are performed with clock control register setting.				
Comparator Received address and self-address specified to address register, or receiv and global address are compared.					
I2CxADR	7 bit register that specifies slave address.				
I2CxDAR	8 bit register used for serial data transfer.				
I2CxBSR	 8 bit register with following functions to show l²C bus status and others. Repeated start condition detection 				
	Arbitration lost detection				
	Acknowledge bit storage				
	• Direction of data transfer				
	Addressing detection				
	General call address detection				
	• First byte detection				
I2CxBCR	8 bit register that performs I ² C bus control and interrupt control has following functions.				
	• Interrupt request/permission				
	Start condition occurrence				
	Master/Slave selection				
	Acknowledge occurrence permission				
I2CxCCR	7 bit register that sets clock frequency of serial data transfer.				
	Operation permission				
	• Frequency setting of serial clock				
	• Standard/High-speed mode selection				
Noise filter	This is noise filter composed of 3 stage shift register circuit. When all 3 values consecutively sampled SCL/SDA line input signals are "1", the filter output becomes "1". When those values are "0", the filter output becomes "0". For other sampling, the state 1 clock before is maintained.				
I2CxBC2R	This is the register to drive "L" forcibly and to confirm the line status after noise filter is passed.				
I2CxECSR	This is the register to enhance CS bit in I2CxCCR register.				
I2CxBCFR	This is the register that specifies frequency range of bus clock to be used.				

19.4. Related pin

I²C uses following pins.

Table 19-2 I²C related pin

Pin	Direction	Qty.	Description
I2C_SCL0 I2C_SCL1	IN/OUT		Clock pin of I ² C bus interface. The last number of the pin name indicates channel number of I ² C. Output of this pin is open drain.
I2C_SDA0 I2C_SDA1	IN/OUT		Data pin of I ² C bus interface. The last number of the pin name indicates channel number of I ² C. Output of this pin is open drain.

19.5. Supply clock

APB clock is supplied to I^2C . Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

19.6. Register

This section describes I²C bus interface register.

19.6.1. Register list

This LSI equips 2 channels of I²C bus interface, and each module has the register shown in Table 19-3.

Channel	Address	Register	Description
I ² C ch0	FFF56000h	I2C0BSR	Bus status register
	FFF56004h	I2C0BCR	Bus control register
	FFF56008h	I2C0CCR	Clock control register
	FFF5600Ch	I2C0ADR	Address register
	FFF56010h	I2C0DAR	Data register
	FFF56014h	I2C0ECSR	Extension CS register
	FFF56018h	I2C0BCFR	Bus clock frequency register
	FFF5601Ch	I2C0BC2R	Bus control 2 register
I ² C ch1	FFF57000h	I2C1BSR	Bus status register
	FFF57004h	I2C1BCR	Bus control register
	FFF57008h	I2C1CCR	Clock control register
	FFF5700Ch	I2C1ADR	Address register
	FFF57010h	I2C1DAR	Data register
	FFF57014h	I2C1ECSR	Extension CS register
	FFF57018h	I2C1BCFR	Bus clock frequency register
	FFF5701Ch	I2C1BC2R	Bus control 2 register

Table 19-3I²C register list

Note:

Access the area of I²C ch0 and I²C ch1 in 32 bit (word)

Description format of register

Following format is used for description of register's each bit in "19.6.2 Bus status register (I2CxBSR)" to "19.6.9 Bus clock frequency register (I2CxBCFR)".

Address		Base address + Offset														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

19.6.2. Bus status register (I2CxBSR)

Address					ch0	: FFF	5 6000	+ 00h	ch1 :	FFF5	7000 +	00h				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		•		(Rese	erved)				BB	RSC	AL	LRB	TRX	AAS	GCA	FBT
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

All bit of this register is cleared during EN bit of I2CxCCR is "0".

Bit 7: BB (bus busy)

This bit shows I²C bus state.

BB	Status				
0	top condition is detected				
1	Start condition is detected (but is in use)				

Bit 6: RSC (Repeated Start Condition)

Repeated start condition detecting bit.

RSC	State				
0	epeated start condition is not detected				
1	Start condition is detected again during bus is in use				

This bit is cleared by writing "0" to INT bit, start condition detection at bus stop, and stop condition detection as well as addressing is not performed at slave.

Bit 5: AL (Arbitration Lost)

Arbitration lost detecting bit

1	AL	State
	0	Arbitration lost is not detected
		Arbitration lost occurs during master transmission, or "1" is written to MSS bit while other systems are using bus

This bit is cleared by writing "0" to INT bit.

Restrictions:

In the multi master environment, prohibit other masters to transmit general call address simultaneously with this module, as well as use of arbitration lost by this module at the second byte or later.

Bit 4: LRB (LAST Received Bit)

This bit is to store 9th bit of the data indicating acknowledge (ACK)/negative acknowledge (NACK).

LRB	State					
0	cknowledge (ACK) is detected					
1	Negative acknowledge (NACK) is detected					

This bit is cleared at start condition detection or stop condition detection.

Bit 3: TRX (Transfer/Receive)

This bit is to indicate transmission/reception state of data transfer.

TRX	State					
0	Reception state					
1	Transmission state					

Bit 2: AAS (Address As Slave)

This is addressing detection bit.

AAS	State					
0	Addressing is not performed at slave					
1	Addressing is performed at slave					

This is cleared at start condition detection or stop condition detection.

Bit 1: GCA (General Call Address)

This is general call address (00h) detecting bit.

GCA	State					
0	neral call address is not received at slave					
1	General call address is received at slave					

This bit is cleared at start condition detection or stop condition detection.

Bit 0: FBT (First Byte Transfer)

This is first byte detecting bit.

FBT	State				
0	ception data is not first byte				
1	Reception data is the first byte (address data)				

Although this is set to "1" at start condition detection, it is cleared if "0" is written to INT bit and addressing is not performed at the salve.

19.6.3. Bus control register (I2CxBCR)

Address	ch0 : FFF5_6000 + 04h							ch1 : FFF5_7000 + 04h								
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)															
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				BER	BEIE	SCC	MSS	ACK	GCAA	INTE	INT
R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This is cleared during EN bit of I2CxCCR is "0", except bit 7 and 6 of this register.

Bit 7: BER (Bus ERror)

This is bus error interrupt request flag bit.

At writing

BER	State						
0	Bus error interrupt request flag is cleared						
1	N/A						

At reading

BER	State		
0	Bus error is not detected		
1	Incorrect start and stop conditions are detected during data transfer		

When this bit is set, EN bit of I2CxCCR resister is cleared, this module becomes in halt state, and the data transfer is discontinued.

Bit 6: BEIE (Bus Error Interrupt Enable)

This is buss error interrupt permission bit.

At reading/writing

BEIE	State						
0	Bus error interrupt is prohibited						
1	Bus error interrupt is permitted						

When this bit is "1" and BER bit is "1", interrupt occurs.

Bit 5: SCC (Start Condition Continue)

This is start condition generation bit.

At writing

SCC	State
0	N/A
1	Start condition is generated again at master transfer

This bit is automatically cleared after setting "1".

Bit 4: MSS (Master Slave Select)

This is master/slave selection bit.

At writing

MSS	State
0	Stop condition is generated, and state becomes slave mode after the transfer
1	State becomes master mode, and start condition is generated to start transfer

This bit is cleared when arbitration lost occurs during master transmission, and state becomes slave mode.

Restrictions:

In the multi master environment, prohibit other masters to transmit general call address simultaneously with this module and to use arbitration lost by this module at the second byte or later.

Bit 3: ACK (ACKnowledge)

This is acknowledge permission bit at receiving data.

At reading/writing

АСК	State
0	Acknowledge is not occurred.
1	Acknowledge is occurred.

This bit is disabled at address data reception in the slave mode.

Bit 2: GCAA (General Call Address Acknowledge)

This is acknowledge permission bit at receiving general call address.

At reading/writing

GCAA	State
0	Acknowledge is not occurred.
1	Acknowledge is occurred.

Bit 1: INTE (INTerrupt Enable)

This is interrupt permission bit.

At reading/writing

INTE	State
0	Interrupt is prohibited
1	Interrupt is enabled

When this bit is "1" and INT bit is "1", interrupt occurs.

Bit 0: INT (INTerrupt)

This is transfer end interrupt request flag bit.

At writing

1	it writing	
	INT	State
Γ	0	Transfer end interrupt flag is cleared
Γ	1	N/A

At reading

<u> </u>	reading	
	INT	State
	0	Transfer is not completed
		This is set when following conditions are applied at completion of 1 byte transfer which includes acknowledge bit.
		• Bus master
	1	Addressed slave
		• General call address is received (only at GCAA = "1")
		 Arbitration lost occurs (only at bus acquisition state)
		• Start condition is attempted while other systems use bus

When this bit is "1", SCL line is maintained in "L" level. This is cleared by writing "0" to this bit, then SCL line opens and the next byte is transferred. Moreover, this is cleared to "0" by occurrence of start condition or stop condition at the master mode.

Competition of SCC, MSS, and INT bits

Competition of the next byte transfer, start condition, and stop condition occurs by writing SCC, MSS, and INT bits simultaneously. Priority order in this case is as follows.

- Occurrence of the next byte transfer and stop condition When writing "0" to INT bit and MSS bit simultaneously, MSS bit is prioritized and stop condition occurs.
- 2. Occurrence of the next byte transfer and start condition When writing "0" to INT bit and "1" to SCC bit simultaneously, SCC bit is prioritized and start condition occurs.
- 3. Occurrence of start condition and stop condition Writing "1" to SCC bit and "0" to MSS bit simultaneously is prohibited.

19.6.4. Clock control register (I2CxCCR)

Address					ch0	: FFF5	5_6000	+ 08h	ch1 :	FFF5_	7000 +	08h				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Res	erved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				(Reserved)	HSM	EN			CS[4:0]		
R/W	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	1	0	0	Х	Х	Х	Х	Х

Bit 7: Unused

The value is always "1" at reading.

Bit 6: HSM (High Speed Mode)

This is standard/high-speed setting bit.

At reading/writing

HSM	State
0	Standard mode
1	High-speed mode

Bit 5: EN (ENable)

This is operation permission bit.

At reading/writing

EN	State
0	Operation is prohibited
1	Operation is permitted

When this bit is "0", each bit of I2CxBSR register and I2CxBCR register (excluding BER and BEIE bits) is cleared. When BER bit is set, this bit is cleared.

A

Bit 4-0: CS4-0 (Clock Period Select 4-0)

This bit is to set frequency of serial transfer clock.

Upper bound of the bus clock frequency is able to be extended by setting I2CxECSR register. Refer to "19.6.8 Expansion CS register (I2CxECSR)" for details.

When I2CxECSR register is not used (using I2CxECSR register in initial state), frequency fscl of serial transfer clock becomes the expression shown below.

At standard mode $fscl = \frac{\phi}{(2 \times m) + 2} \qquad \phi : APB_clock$

t high-speed mode

$$fscl = \frac{\phi}{int(1.5 \times m) + 2} \qquad \phi : APB_clock$$

$$int() : Round off after decimal point$$

Be sure to set fscl not to exceed the following values at the master operation.

- At standard mode: 100KHz.
- At high-speed mode: 400KHz.

APB clock ϕ of this module should be used within the range shown below.

When it is less than the range, transmission by max. transfer rate is not guaranteed.

When it exceeds the range, upper bound of the bus clock frequency is able to be extended by setting I2CxECSR register.

- At the master operation: $14MHz \sim 18MHz$.
- At the slave operation: 14MHz ~ 18MHz.
- At the register access operation: $14MHz \sim 41.5MHz$

Note:

+2 cycle is min. overhead for checking output level change of SCL line. When rising edge delay of SCL line is large or the clock is enlarged with slave device, the value is lager than the above.

The value of m to CS4 \sim 0 is shown in the next page

ර	
FUJITSU	

CS4	CS3	CS2	CS1	CS0	-	m
0.54	0.55	052	COI	CSU	Standard	High speed
0	0	0	0	0	65	Setting prohibited
0	0	0	0	1	66	Setting prohibited
0	0	0	1	0	67	Setting prohibited
0	0	0	1	1	68	Setting prohibited
0	0	1	0	0	69	Setting prohibited
0	0	1	0	1	70	Setting prohibited
0	0	1	1	0	71	Setting prohibited
0	0	1	1	1	72	Setting prohibited
0	1	0	0	0	73	9
0	1	0	0	1	74	10
0	1	0	1	0	75	11
0	1	0	1	1	76	12
0	1	1	0	0	77	13
0	1	1	0	1	78	14
0	1	1	1	0	79	15
0	1	1	1	1	80	16
1	0	0	0	0	81	17
1	0	0	0	1	82	18
1	0	0	1	0	83	19
1	0	0	1	1	84	20
1	0	1	0	0	85	21
1	0	1	0	1	86	22
1	0	1	1	0	87	23
1	0	1	1	1	88	24
1	1	0	0	0	89	25
1	1	0	0	1	90	26
1	1	0	1	0	91	27
1	1	0	1	1	92	28
1	1	1	0	0	93	29
1	1	1	0	1	94	30
1	1	1	1	0	95	31
1	1	1	1	1	96	32

19.6.5. Address register (I2CxADR)

Address					chû	· FFF5	6000	1 OCh	ch1 :	FFF5	7000	ACh				
Audress						. FFF5	_	T UCII	1		_/000 +			1		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	Name (Reserved)															
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				(Reserved)				A[6:0]			
R/W	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	1	Х	Х	Х	Х	Х	Х	Х

Bit 7: Unused

The value is always "1" at reading.

Bit 6-0: A6-0 (Address 6-0)

This is slave address storage bit.

The comparison with I2CxDAR register is performed after address data reception at slave. If they are matched, acknowledge is transmitted to master.

19.6.6. Data register (I2CxDAR)

								4.03			-	103					
Address					ch0	: FFF5	5_6000	+ 10h	n ch1 : FFF5_7000 + 10h								
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name	(Reserved)																
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name				(Rese	erved)							D[′	7:0]				
R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	

Bit 7-0: D7-0 (Data 7-0)

This is serial data storage bit.

This data register is used for serial transfer transmitted from MSB. When data is received (TRX = 0), the data output becomes "1".

This register's writing side is double buffer that writing data is loaded to serial transfer register at transmission of each byte if bus (BB = 1) is in use.

Since serial transfer register is directly read at reading, received data is valid only when INT bit is set.

19.6.7. Two bus control registers (I2CxBC2R)

Address					ch0	: FFF5	_6000	+ 1Ch	ch1 :	FFF5	7000 +	- 1Ch				
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	Name (Reserved)															
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				(Rese	erved)	SDAS	SCLS	(Rese	rved)	SDAL	SCLL
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	Х	Х	0	0	0	0

Bit 7 and 6: Unused

The value is always "00" at reading.

Bit 5: SDAS (SDA status)

Signal level of SDA line after passed noise filter is indicated.

Only reading is valid.

SDAS	State
0	The SDA line is "0"
1	The SDA line is "1"

Bit 4: SCLS (SCL status)

Signal level of SCL line after passed noise filter is indicated.

Only reading is valid.

SCLS	State
0	SCL line is "0"
1	SCL line is "1"

Bit 3 and 2: Unused

The value is always "00" at reading.

Bit 1: SDAL (SDA low drive)

SDAO output is forcibly become "L".

Both reading/writing are valid.

SDAL	State
0	SDAL output is in normal operation
1	SDAL output is forcibly become "L"

Bit 0: SCLL (SCL Low drive)

SCLO output is forcibly become "L".

Both reading/writing are valid.

SCLL	State
0	SCLO output is in normal operation
1	SCLO output is forcibly become "L"

19.6.8. Expansion CS register (I2CxECSR)

Address		ch0 : FFF5_6000 + 14h ch1 : FFF5_7000 + 14h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				(Rese	erved)			CS[10:5]			
R/W	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit 5-0: CS10-5 (Clock Period Select 10-5)

This is set to expand upper bound of bus clock frequency with extending CS4 \sim 0 in the I2CxCCR register.

Initial value of CS10 \sim 5 is "000000", and setting other values goes into frequency upper bound expansion mode.

CS10~5	State
	No upper bound expansion of bus clock frequency (only $CS4 \sim 0$ is used)
Other than 000000	There is upper bound expansion of bus clock frequency

Standard mode:

$$fscl = \frac{\phi}{(2 \times m) + 2} \qquad \phi : APB_clock$$
$$m : (Value of CS10~0)+1$$

High-speed mode:

$$fscl = \frac{\phi}{int(1.5 \times m) + 2} \qquad \phi : APBclock$$

$$m : (Value of CS10 \sim 0) + 1$$

$$int() : Round off after decimal point$$

Set fscl not to exceed the following values at master operation.

- Standard mode: 100kHz
- High-speed mode: 400kHz

Use system clock ϕ of this module within the range shown below.

When it is less than the range, transfer in max. transfer rate is not guaranteed.

When it exceeds the range, the operation is not guaranteed.

- Master operation: $14MHz \sim 41.5MHz$
- Slave operation: $14MHz \sim 41.5MHz$
- Register access operation: 14MHz ~ 41.5MHz

Note:

+2 cycle is min. overhead for checking output level change of SCL line. When rising edge delay of SCL pin is large or the clock is enlarged with slave device, the value is larger than the above.

When extension CS register is used, m value becomes $CS10 \sim 0 + 1$.

19.6.9. Bus clock frequency register (I2CxBCFR)

Address	ch0 : FFF5_6000 + 18h ch1 : FFF5_7000 + 18h															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)					(Rese	erved)		FS[3:0]			
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bit 7 and 4: Unused

The value is always "0000" at reading.

Bit 3-0: FS3-0 (Bus Clock Frequency Select 3-0)

Select frequency of the bus clock to be used. Characteristics such as noise filters are set with this register's setting. A standard setting value is shown below; however, adjustment might be required depending on I^2C buffer characteristics and noise state on I^2C bus.

FS3	FS2	FS1	FS0	Frequency [MHz]
0	0	0	0	Setting prohibited
0	0	0	1	14 or more ~ Less than 20
0	0	1	0	20 or more \sim Less than 40
0	0	1	1	40 or more \sim Less than 60
0	1	0	0	-
0	1	0	1	_
0	1	1	0	-
0	1	1	1	_
1	0	0	0	_
1	0	0	1	-
1	0	1	0	_
1	0	1	1	-
1	1	0	0	_
1	1	0	1	_
1	1	1	0	_
1	1	1	1	_

19.7. Operation

I²C bus communicates with 2 interactive bus lines, serial data line (SDA) and serial clock line (SCL.) This module is connected to SDA and SCL lines through open drain IO cell by wired logic.

19.7.1. Start condition

When "1" is written to MSS bit with bus open (BB = 0), this module becomes master mode, and start condition occurs at the same time. In the master mode, the start condition can be occurred again by writing "1" to SCC bit even if the bus is in use (BB = 1).

There are 2 ways of condition to engender start condition.

1. Writing "1" to MSS bit in status (MSS = 0 & BB = 0 & INT = 0 & AL = 0) that bus is not used

2. Writing "1" to SCC bit in interrupt status (MSS = 1 & BB = 1 & INT = 1 & AL = 0) at bus master When "1" is written to MSS bit at idling, AL bit is set to "1". Writing "1" to MSS bit and SCC bit in other states than the above is ignored.

Start condition on I²C bus

Changing SDA line from "1" to "0" while SCL line is "1" is called start condition.

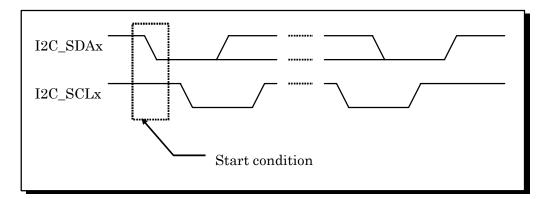


Figure 19-2 Start condition on I²C bus

19.7.2. Stop condition

When "0" is written to MSS bit at master operation (MSS = 1), stop condition occurs and mode becomes slave. Following is condition to engender stop condition.

1. Writing "0" to MSS bit in interrupt status (MSS = 1 & BB = 1 & INT = 1 & AL = 0) at bus master Writing "1" to MSS bit in other states than the above is ignored.

Stop condition on I²C bus

Changing SDA line from "0" to "1" while SCL line is "1" is called stop condition.

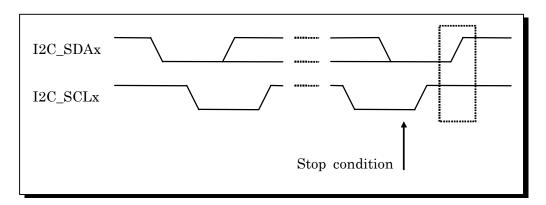


Figure 19-3 Stop condition on I^2C bus

19.7.3. Addressing

In the master mode, status is set to BB = "1" and TRX = "1" after start condition occurs, and contents of I2CxDAR register is output from MSB. When acknowledge is received from the slave after sending address data, bit 0 of its data (I2CxDAR register's bit 0 after transmission) is reversed and stored to TRX bit.

In the salve mode, status is set to BB = "1" and TRX = "0" after start condition occurs, and transmission data from the master is received to I2CxDAR register. After receiving address data, I2CxDAR register and I2CxADR register are compared. When they are matched, status is set to AAS = "1" and acknowledge is sent to the master, then bit 0 of the reception data (I2CxDAR register's bit 0 after reception) is stored to TRX bit.

Transfer format of slave address

Transfer format of the slave address is shown below.

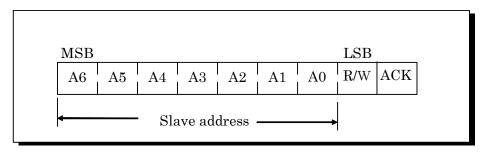


Figure 19-4 Slave address's transfer format

Map of slave address

Slave address map is shown below.

Slave address	R/W	Description							
0000 000	0	General call address							
0000 000	1	Start byte							
0000 001	Х	CBUS address							
0000 010	Х	Reserved							
0000 011	Х	Reserved							
0000 1XX	Х	Reserved							
0001 XXX									
1110 VVV	Х	Available slave address							
1110 XXX									
1111 0XX	Х	10 bit slave address (*1)							
1111 1XX	Х	Reserved							
*1: This module does not s	upport 10	bit slave address							

19.7.4. Synchronous arbitration of SCL

When multiple I^2C devices become master device almost the same time to operate SCL line, each device detects SCL line status and automatically adjusts the line's operation timing with keeping the pace to slow device.

I2C_SCLx
Macro A
SCL output (before arbitration)
SCL output (after arbitration) Take timing from when SCL line becomes "H" to the next SCL output = "L"
Macro B Take timing from when SCL line becomes "H" to the next SCL output = "L"
SCL output (before arbitration)
SCL output (after arbitration)

Figure 19-5 SCL output's synchronous arbitration

19.7.5. Arbitration

Arbitration occurs when other masters also transmit data at the same time.

- When own transfer data is "1" and data on SDA line is "0", AL = "1" is set regarding that arbitration is lost.
- When start condition is attempted during other masters are using bus, AL = "1" is set regarding that arbitration is lost.
- When other masters' start condition is detected before starting condition occurs though unused bus is confirmed and MSS = "1" is set, AL = "1" is set regarding that arbitration is lost.

When AL bit is set to "1", status becomes MSS = "0" and TRX = "0" that state becomes slave reception mode. When arbitration is lost (the right to use the bus is lost.), master discontinues drive of SDA. However, drive of SCL is not discontinued until 1 byte of transmission ends and the interrupt is cleared.

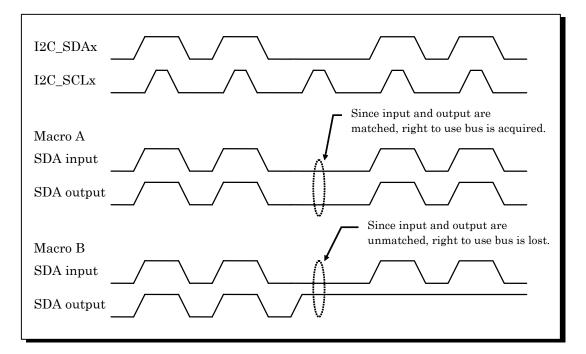


Figure 19-6 Arbitration

19.7.6. Acknowledge/Negative acknowledge

9th bit of data shows acknowledge (ACK)/negative acknowledge (NACK), status of "0" is acknowledge and "1" is negative acknowledge.

The reception side transmits acknowledge/negative acknowledge to transmission side, and they are stored to LRB bit at data reception.

If acknowledge is not received from master reception side at slave transmission (when negative acknowledge is received), the state becomes TRX = "0" and mode becomes slave reception mode. As a result, master is able to generate stop condition when slave opens SCL.

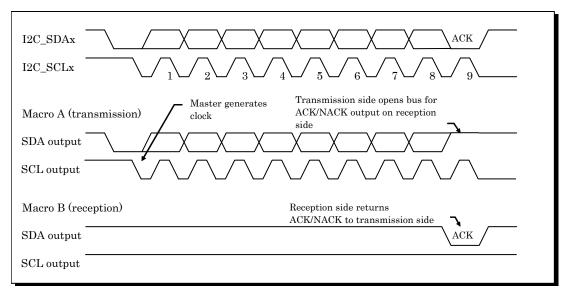


Figure 19-7 Acknowledge/Negative acknowledge

19.7.7. Bus error

When following conditions meet, state is judged as bus error and this module stops.

- a. Detection of basic rule violation on I²C bus in data transmission (including ACK bit)
- b. Detection of stop condition at master
- c. Detection of basic rule violation on I²C bus at bus idle

Figure 19-8 Bus error

Initialization 19.7.8.

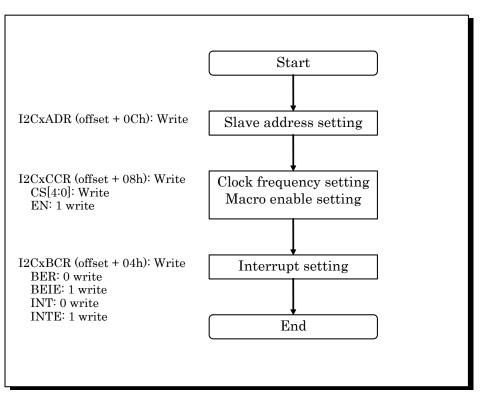


Figure 19-9 I²C initialization

19.7.9. One byte transfer from master to slave

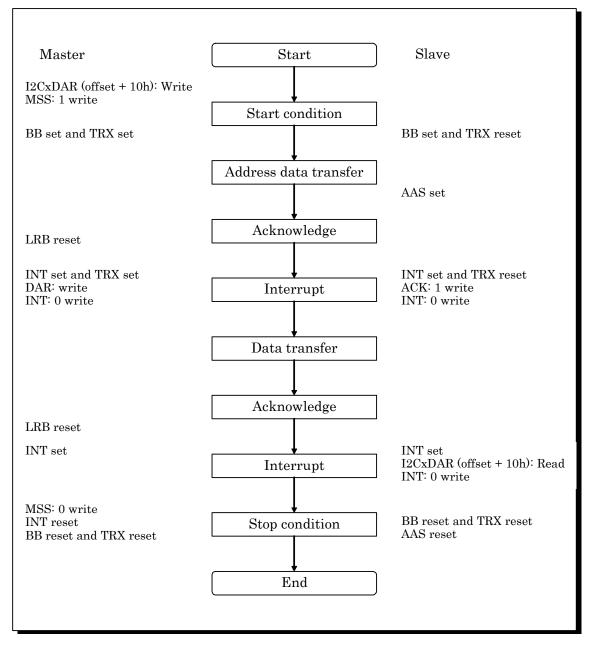


Figure 19-10 1 byte transfer example from master to slave

19.7.10. One byte transfer from slave to master

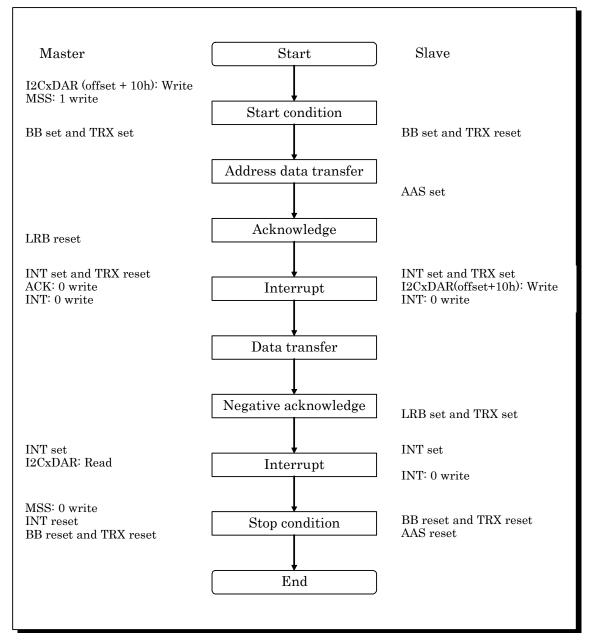


Figure 19-11 1 byte transfer example from slave to master

19.7.11. Recover from bus error

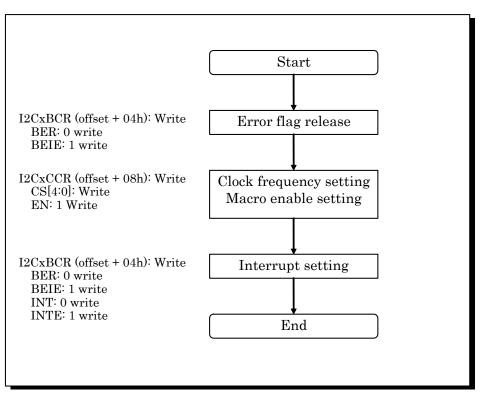


Figure 19-12 Setting example for recovering from bus error

19.7.12. Interrupt process and wait request operation to master device

When INT flag of I2CxBCR register is "H" (during this module engenders interrupt and CPU proceeds interrupt operation), "L" is output to SCL line. While slave side sets "L" to SCL line, master side is unable to generate the next transfer so that slave side puts wait on master side.

19.8. Notice

System clock and fscl of this module

Supply system clock to this module within the following range. The communication with system clock of 18MHz or more needs I2CxCSR setting.

• Master operation: 14MHz ~ 41.5MHz

Set I2CxCCR not to exceed the following limits on fscl. If it exceeds the upper bound of each mode, normal transfer is not proceeded since it is timing violation on I^2C bus.

Standard: 100kHz

High-speed: 400kHz

- Slave operation: $14MHz \sim 41.5MHz$
- Register access: 14MHz ~ 41.5MHz

10 bit slave address

This module does not support 10 bit slave address; therefore, do not specify slave address from 78H to 7bH for the module. When wrong address is specified, acknowledge is returned at receiving 1byte; however, normal transfer is not proceeded.

Competition of SCC, MSS, and INT bit

Simultaneous writing of SCC, MSS, and INT bits causes competition of start and stop conditions at the next byte transfer. The priority of this case is as follows.

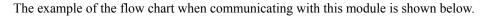
1. Occurrence of the next byte transfer and stop condition

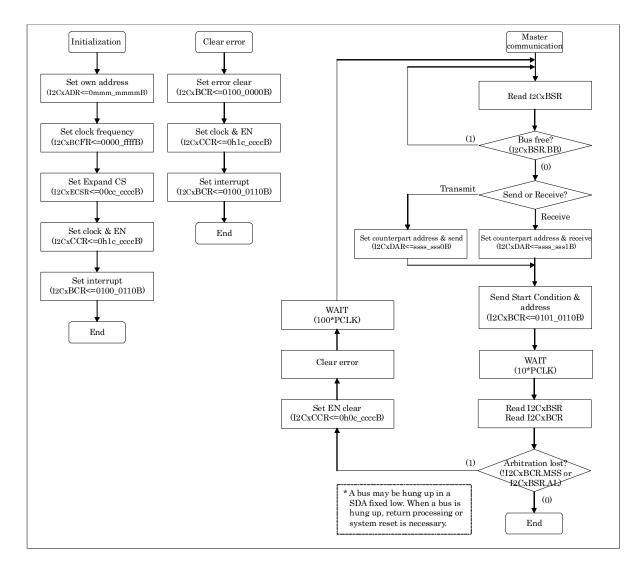
When "0" is written to INT bit and MSS bit simultaneously, MSS bit is prioritized and stop condition occurs.

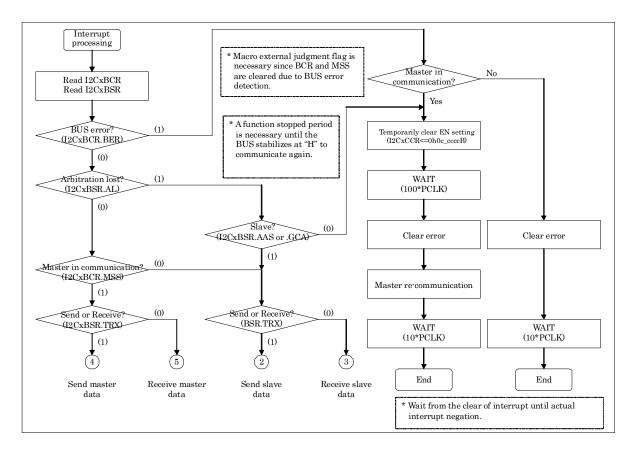
- Occurrence of the next byte transfer and start condition When "0" is written to INT bit and "1" is written to SCC bit simultaneously, SCC bit is prioritized and start condition occurs.
- 3. Occurrence of start condition and stop condition Writing "1" to SCC bit and "0" to MSS bit simultaneously is prohibited.

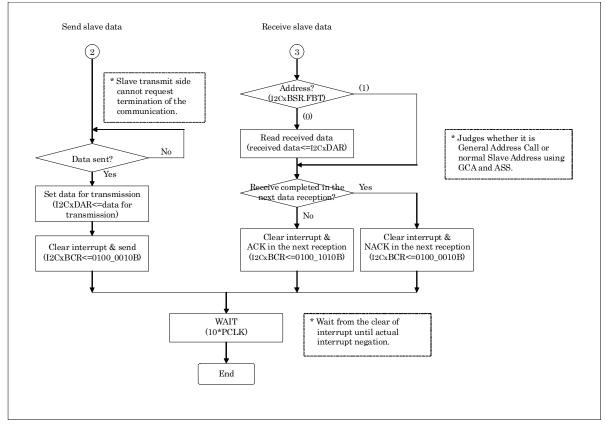
Serial transfer clock setting

When rising edge delay of SCL line is large or clock is expanded at the slave device, the value may be smaller than the setting value (calculated value) since overhead occurs.

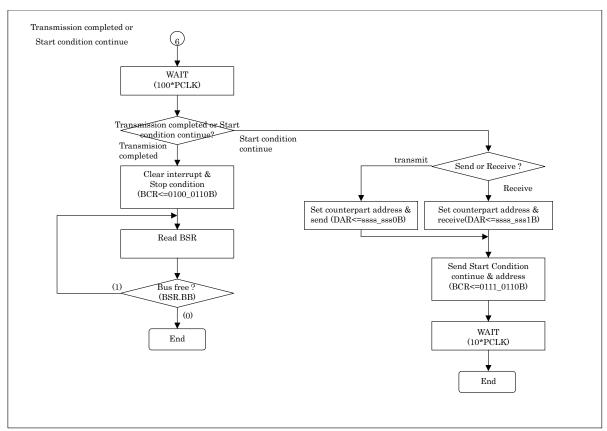

Restrictions in global call address transmission at using multi master

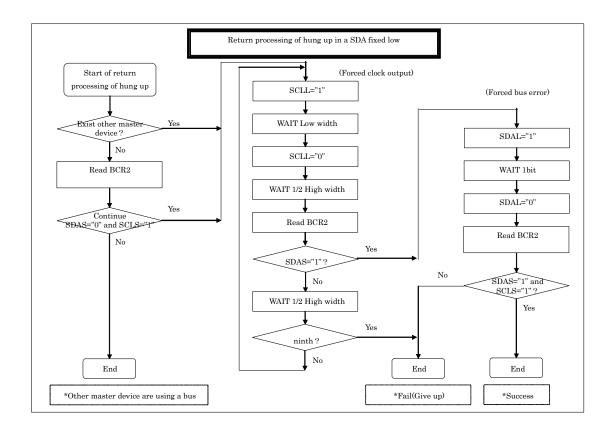

When this module is used at multi master, it is prohibited that other masters send global call address at the same time of this module and it loses arbitration at the 2nd byte or later.


Following usage does not fall under this restriction.


- This module is used in the single master environment.
- This module is used in the multi mater environment; however, it does not send general call address.
- This module is used in the multi master environment; however, other modules do not use general call address transmission.
- Although this module is used in the multi master environment and other masters send general call address simultaneously with this module, it does not lose arbitration at the 2nd byte or later.*
 - *: Because the larger transmission data causes arbitration lost, the data of the 2nd byte or later must always be smaller than the value of other masters' data.

19.9. Flow Charts





FU

Ĩtsu

20. Serial peripheral interface (SPI)

This chapter describes function and operation of serial imperial interface (SPI.)

20.1. Outline

SPI is a serial interface to perform synchronous communication.

20.2. Feature

SPI has following features:

- Serial synchronous transmission of the full duplex
- Transfer format is settable to programmable
 - a) Bit rate
 - b) Data length (1 ~ 32 bit)
 - c) Clock polarity
 - d) Phase
- Supporting 2 types of slave select signals
- Only 1 slave is connectable

Example of SPI connection

Figure 20-1 shows SPI connection example.

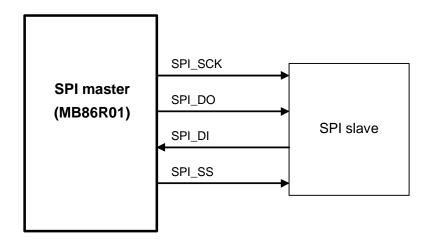


Figure 20-1 Example of SPI connection

Note:

When slave is active, SPI_DI pin may be floating.

20.3. Block diagram

Figure 20-2 shows block diagram of SPI.

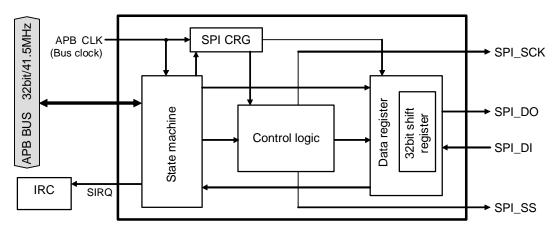


Figure 20-2 Block diagram of SPI

20.4. Supply clock

APB clock is supplied to SPI. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

20.5. Transition state

Figure 20-3 shows SPI transition state chart.

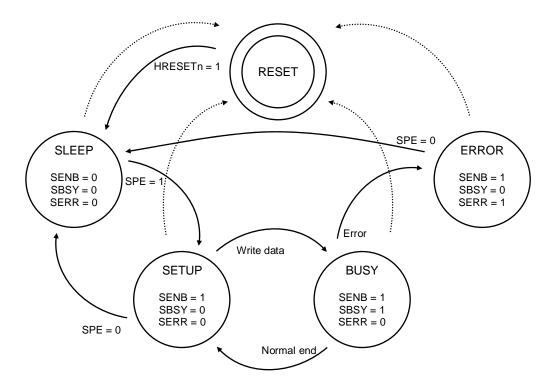


Figure 20-3 SPI state transition chart

Detail of each state shown in Figure 20-3 is as follows. SPI moves to reset state with hardware reset (HRESETn = 0) from all conditions (broken line in the chart.)

SPI state	Description
Sleep (SLEEP)	Initial state of SPI. Clock is not supplied except to state machine. While setup or transition from error state, internal logic is initialized except certain part.
Setup (SETUP)	 Stand-by state of communication between master and slave. SPI changes state in the following cases. SPE bit of SPI slave control register (SPISCR) is set to "1" in the sleep state Communication completes properly in the busy state Received data should be read in the setup state.
Busy (BUSY)	Communicating state with SPI slave. Writing SPI data register (SPIDR) in the setup state moves to this state; in that time, transmission/reception of the data are performed simultaneously. When 1 bit is output to SPI_DO pin, 1 bit is input from SPI_DI pin. Set SIRQ at the normal termination of the communication.
Error (ERROR)	Performing prohibited register access in the busy state moves to this state. Clearing SPE bit of SPI slave control register (SPISCR) returns to sleep (SLEEP) state.

20.6. Register

This section describes SPI register.

20.6.1. Register list

SPI is controlled by the register shown in Table 20-1.

Table 20-1SPI register list

Addr	ess	Register	Abbreviation	Description					
Base	Offset	Kegistei	Abbreviation	Description					
$FFF4_{0000}_{H}$	$+00_{\rm H}$	SPI control register	SPICR	This sets common setting with SPI					
	$+ 04_{\rm H}$	SPI slave control register	SPISCR	This sets SPI slave fixed setting					
	+ 08 _H	SPI data register	SPIDR	This writes and reads data to be transmitted/received to SPI slave					
	$+ 0C_{H}$	SPI status register	SPISR	This maintains SPI state					

Description format of register

Following format is used for description of register's each bit in "20.6.2 SPI control register (SPICR)" to "20.6.5 SPI status register (SPISR)".

Address	Base address + Offset															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

20.6.2. SPI control register (SPICR)

This register is to set common setting of SPI.

SPICR setting should be carried out in the sleep or setup states, and do not write to this register in the busy state.

Each bit of SPICR is not cleared even the state is changed to sleep by SPE = 0 of SPI slave control register (SPISCR.)

Address		$FFF4_{0000_{H}} + 00_{H}$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-	_	-	-		-	_	_	-	_	—	-	-	-	-	SPL0
R/W	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R0	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	_	-	-	I	CDV2	CDV1	CDV0	_	_	—	_	-	-	CPOL	CPHA
R/W	R0	R0	R0	R0	R0	R/W	R/W	R/W	R0	R0	R0	R0	R0	R0	R/W	R/W
Initial value	Х	Х	Х	Х	Х	0	0	0	Х	Х	Х	Х	Х	Х	0	0

(Note) This register should be accessed in 32 bit unit.

	Bit field	Description									
No.	Name			Description							
31-19	_	Unused bits. The write access is ignored. The read value of these bits is always "0".									
18-17	_	Unused bits.									
		The write access is ignored.									
16	SPL0	Polarity of SPI_SS pin (slave selection pin) is specified.									
		0 Active-high (initial value)									
		1 Active-low									
15-11	_	Unused bits.									
10.9	CDV2-0	The write access is ignored. The read value of these bits is always "0". Frequency dividing ratio of serial clock (SCK) to bus clock (PCLK) is specified.									
10-8	CDV2-0	Frequency arvia	ing ratio of	serial clock (SCK) to bus clock (PCLK) is specified.							
		CDV2 CDV	'1 CDV0	Frequency dividing ratio							
		0 0	0	PCLK \times 1/2 (initial value)							
		0 0	1	$PCLK \times 1/4$							
		0 1	0	$PCLK \times 1/8$							
		0 1	1	$PCLK \times 1/16$							
		1 0	0	$PCLK \times 1/32$							
		1 0	1	$PCLK \times 1/64$							
		1 1	0	$PCLK \times 1/128$							
		1 1	1	$PCLK \times 1/256$							
7-2	_	Unused bits. The write access is ignored. The read value of these bits is always "0".									
1	CPOL Polarity of serial clock (SCK) is selected.										
		0 Positive pulse (initial value)									
		1 Negative pulse									
0	СРНА	DI/DO) and serial clock (SCK) are specified.									
		Timing at CPHA = 0 or 1, and CPOL = 0 is shown in Figure 20-4 Timing at CPHA = 0 or 1, and CPOL = 1 is shown in Figure 20-5									
			x = 0.011, a	$\lim_{t \to \infty} C_t O L = 1 \text{ is shown in Figure 20-3}$							

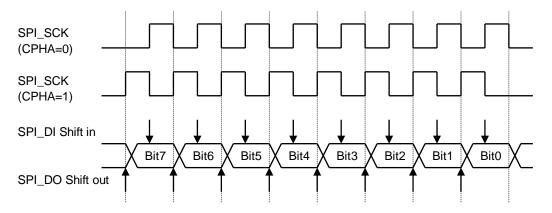


Figure 20-4 Timing of serial data and serial clock (at CPOL = 0)

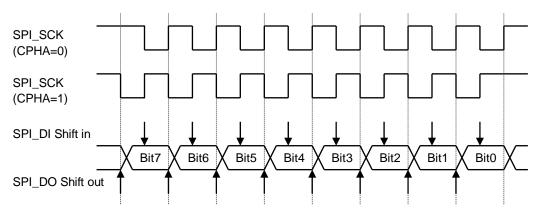
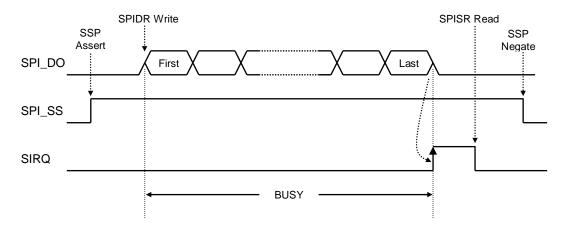


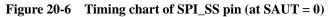
Figure 20-5 Timing of serial data and serial clock (at CPOL = 1)

20.6.3. SPI slave control register (SPISCR)

This register maintains unique setting of SPI slave.

All bits are cleared by moving state to sleep. Set this register at sleep or setup state.


Address	$FFF4_{0000_{H}} + 04_{H}$															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-	_		SPE	-	-	_	DRVS	-	-	_	_	STL3	STL2	STL1	STL0
R/W	R0	R0	R0	R/W	R0	R0	R0	R/W	R0	R0	R0	R0	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	0	Х	Х	Х	0	Х	Х	Х	Х	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	-	DLN4	DLN3	DLN2	DLN1	DLN0	_	-	SMOD	SAUT	-	_	SSP1	SSP0
R/W	R0	R0	R0	R/W	R/W	R/W	R/W	R/W	R0	R0	R/W	R/W	R0	R0	R/W	R/W
Initial value	Х	Х	Х	0	0	0	0	0	Х	Х	0	0	Х	Х	0	0


(Note) This register should be accessed in 32 bit unit.

Bit field		Description							
No.	Name	Description							
31-29	_	Unused bits. The write access is ignored. The read value of these bits is always "0".							
28	SPE	SPI's clock supply is controlled. 0 Clock supply to internal logic stops except certain part (initial value) 1 Clock is supplied to all the circuits Write "1" to operate SPI. Its state changes from sleep to setup by setting SPE bit. It changes to sleep by clear; at the same time, internal logic is reset except certain part.							
27-25	_	Unused bits. The write access is ignored. The read value of these bits is always "0".							
24	DRVS	0 MSB> LSB (initial value) 1 LSB> MSB							
27-25	_	Unused bits. The write access is ignored. The read value of these bits is always "0".							
19-16	STL3-0	The write access is ignored. The read value of these bits is always 0. Strobe width is specified at pulse mode selection (SMOD = 1) in the range of SCK 1 ~ 16 cycles. 0000 SCK 1cycle (initial value) 0001 SCK 2cycles : : 1110 SCK 15cycles 1111 SCK 16cycles							
15-13	_	Unused bits. The write access is ignored. The read value of these bits is always "0".							

FUJITSU

Bit field		Description						
No.	Name	Description						
12-8	DLN4-0	Data length of transmission/reception serial data is specified in the range of 1 ~ 32 bit.						
		00000 1 bit (initial value)						
		00001 2 bit						
		00010 3 bit						
		: :						
		11101 30 bit						
		11110 31 bit						
		11111 32 bit						
7-6	_	Unused bits. The write access is ignored. The read value of these bits is always "0".						
5	SMOD	Operation mode of slave selection is specified. Slave selection signal is output to SPI_SS pin.						
		0 Selection mode (always active while communication) (initial value)						
		1 Pulse mode (after communicating, this becomes active)						
4	SAUT	Operation timing of slave selection is specified according to the combination of SMOD bit.						
		0 Slave selection synchronizes with SSP bit's setting value regardless of SMOD (see Figure 20-6) (initial value)						
		1SCK of wait is added from SPI data register (SPIDR) writing to serial data transmission, and from the last data transmission to asserting/negating salve selection (see Figure 20-7)						
3-2	_	Unused bits. The write access is ignored. The read value of these bits is always "0".						
1-0	SSP1-0	Slave selection pin to be active is specified.						
		00 Slave selection pin becomes non-active (initial value)						
		01 SPI_SS pin becomes active						
		10 Reserved (setting prohibited)						
		11 Reserved (setting prohibited)						

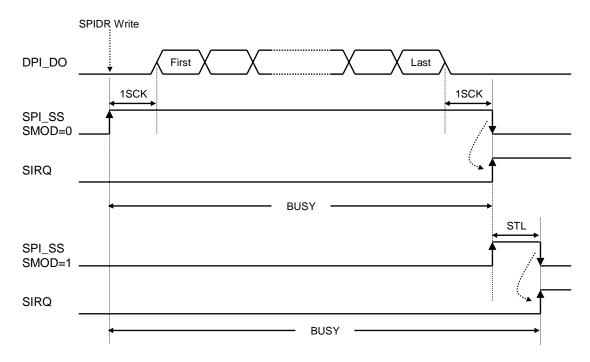


Figure 20-7 Timing chart of SPI_SS pin (at SAUT = 1)

20.6.4. SPI data register (SPIDR)

This register is used to write/read data to be transmitted to/received from SPI slave.

Address							FF	F4_00	00 _H + 0	8 _H						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

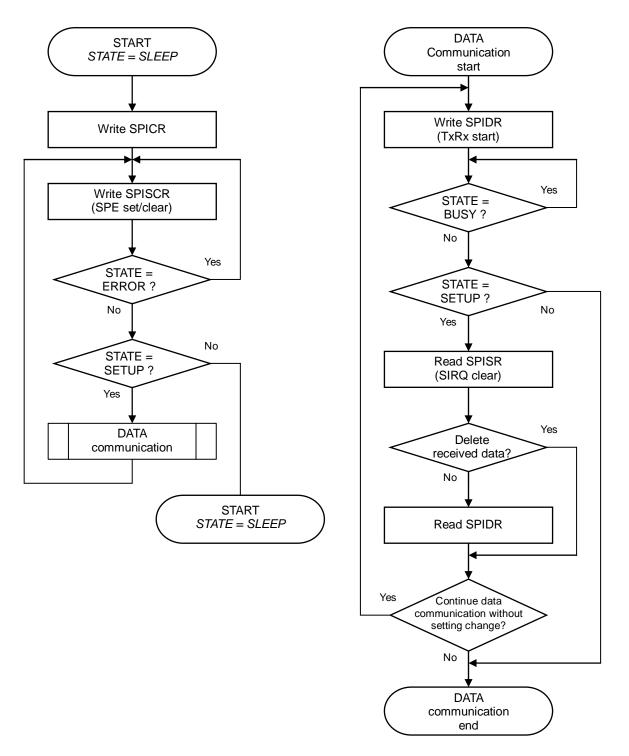
(Note) This register should be accessed in 32 bit unit.

Do not operate this register in the busy state.

	Bit field	Description			
No.	Name	Description			
31-0	D31-0	Transmission/Reception data to SPI slave is stored. SPIDR is reset at moving to the sleep state. Writing to this register in the setup state starts transmission/reception of the data length specified in DLN[4:0] bit of SPI slave control register (SPISCR), and LSB is fixed regardless of the data length.			

20.6.5. SPI status register (SPISR)

This register is to maintain SPI state, and it is not able to be written.


Address							FF	F4_00	00 _H + 0	C _H						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-	-	-	-	1			-	-	1	1	-		-	-	-
R/W	R0	R0	R0	R0	R0	R0	R0	R0	R0							
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	-	-	-	-	-	-	SIRQ	_	-	-	-	SERR	SBSY	SENB
R/W	R0	R	R	R	R	R	R	R	R							
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х	Х	0	0	0


(Note) This register should be accessed in 32 bit unit

	Bit field					
No.	Name	Description				
31-8	_	Unused bits. The write access is ignored. The read value of these bits is always "0".				
7	SIRQ	Proper completion of communication between master slaves is indicated.				
		0 It is under the communication or stand-by (initial value)				
		1 Communication is completed				
		SIRQ pin outputs this bit. It is cleared by reading SPISR register. Figure 20-6 and Figure 20-7 show timing chart.				
6-3	_	Unused bits. The write access is ignored. The read value of these bits is always "0".				
2	SERR	Operation error is indicated.				
		0 Normal operation is in process (initial value)				
		1Prohibited operation occurs Clear SPE bit of SPI slave control register (SPISCR)				
		SERR bit is set to "1" by processing other operations than reading SPICR, SPISCR, and SPISR in the busy state. Moreover, this bit is cleared by changing state to sleep with clearing SPE bit of SPISCR.				
1	SBSY	Communication with SPI slave is in process.				
		0 It is standing-by (initial value)				
		1 It is communicating				
		 SBSY is set to "1" by writing to SPI data register (SPIDR.) Do not clear SPE bit of SPISCR in the busy state. This bit is released by either of followings: SIRQ bit setting SERR bit setting 				
0	SENB	SPI circuit is active.				
		0 Clock supply to internal logic is stop except to certain part (initial value) 1 Clock is supplied to all the circuits				

20.7. Setup procedure flow

Figure 20-8 shows SPI setup procedure flow.

21. CAN interface (CAN)

This chapter describes CAN interface. Refer following website for CAN module specification.

URL: http://www.semiconductors.bosch.de/en/20/can/products/ccan.asp

21.1. Outline

MB86R01 equips 2 ports of CAN interface which is in compliance with CAN protocol version 2.0 part A and B.

21.2. Block diagram

Figure 21-1 shows block diagram of CAN.

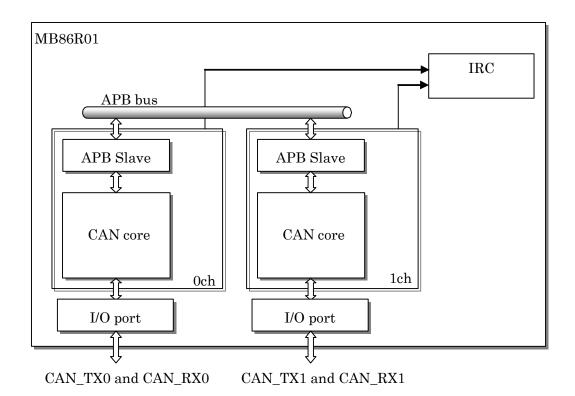


Figure 21-1 Block diagram of CAN

21.3. Supply clock

APB clock is supplied to CAN interface. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

21.4. Register

Register mapping of this LSI is in byte address (8 bit.)

16 bit length of register is allocated by word address unit (32 bit) for local address of CAN; thus valid data in 32 bit width data of APB Bus is 16 bit.

Register address	CAN 0ch register address	APB Bus data[31:0]
FFF5_4000h	OOh	{0x0000, 16 bit data}
FFF5_4004h	02h	{0x0000, 16 bit data}
FFF5_4008h	04h	{0x0000, 16 bit data}

Table 21-1 CAN 0ch register map

Table 21-2CAN 1ch register map

Register address	CAN 1ch register address	APB Bus data [31:0]
FFF5_5000h	OOh	{0x0000, 16 bit data}
FFF5_5004h	02h	{0x0000, 16 bit data}
FFF5_5008h	04h	{0x0000, 16 bit data}

22. MediaLB interface

This chapter describes MediaLB interface.

License needs to be acquired for its specification which is provided by SMSC.

Please contact SMSC and request the following document:

OS62400 MediaLB Device Interface Macro Advanced Product Data Sheet

22.1. Outline

MB86R01 equips 1 port of MediaLB interface which enables using up to 16 channels.

22.2. Block diagram

Figure 22-1 shows block diagram of MediaLB.

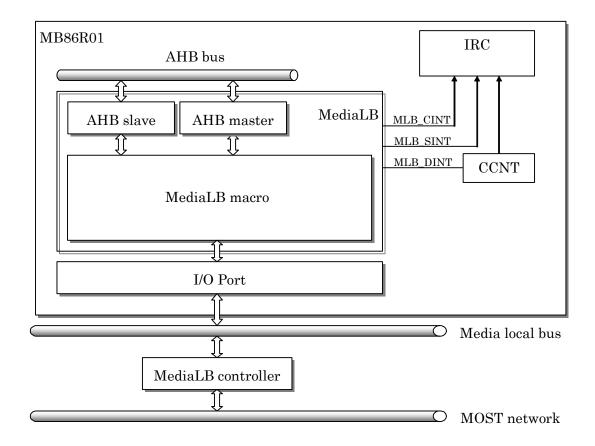


Figure 22-1 Block diagram of MediaLB

22.3. Supply clock

AHB clock is supplied to MediaLB interface. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

22.4. Register

This LSI's register is mapped in word address (32 bit); however, local address of the MediaLB Macro is described by byte address (8 bit.)

Register address	MediaLB local address				
FFF6_0000h	00h				
FFF6_0004h	01h				
FFF6_0008h	02h				

 Table 22-1
 Local address description in MediaLB Macro

23. USB Host Controller

This chapter describes function and register spec of USB Host Controller. See the following website for operation as well.

Host Controller specification with OHCI standard 1.0a version URL: <u>http://h18000.www1.hp.com/productinfo/development/openhci.html</u>

Host Controller specification with EHCI standard 1.0 version URL: <u>http://www.intel.com/technology/usb/ehcispec.htm</u>

Version of this chapter is managed unity with the one of LSI product specifications.

23.1. Outline

This Host Controller is in compliance with the USB standard 2.0 editions. It equips PHY for 1 port, Host Controller complying with the EHCI standard 1.0 edition, and Host Controller complying with the OHCI standard 1.0a version which corresponds to three modes, HS/FS/LS.

23.2. Spec limitation

USB Host Controller has following limitations.

- OUT transfer (host => device) for 512 byte or more of packet size is unsupported. Limitation is applied to isochronous and interrupt transfers of 512 byte or more (up to 1024 byte) according to the standard. IN transfer (device => host) is not limited.
- 2. Buffer depth setting value is fixed to 512 byte.
- 3. Buffer threshold setting value is limited to "buffer size 2 or less".

23.3. Feature

Host Controller's function list is shown bellow.

Table 23-1	USB Host	Controller	function list
		• • • • • • • • • • • • •	

Item	Function		
High-Speed transfer	In compliance with Host Controller with the EHCI standard 1.0 edition SPLIT transfer is supported.		
Full-Speed/Low-Speed transfer	In compliance with Host Controller with the OHCI standard 1.0a edition		
Number of port	1		
Debug port	N/A		
Port indicator	Not supported.		
Companion controller	Host Controller with the OHCI standard 1.0a edition x 1		
Power control function of port	Supported.		
Extended Capability Pointer	Not supported.		
Asynchronous Park Mode	Programmable (Park value is settable.)		
64bit addressing	Not supported.		
Others, original function	 Micro frame length is settable. PacketBuffer threshold is settable. PacketBuffer size is settable. Nak Reload correction function can be turned on/off. SOF interval is adjustable by register setting. 		

23.4. Block diagram

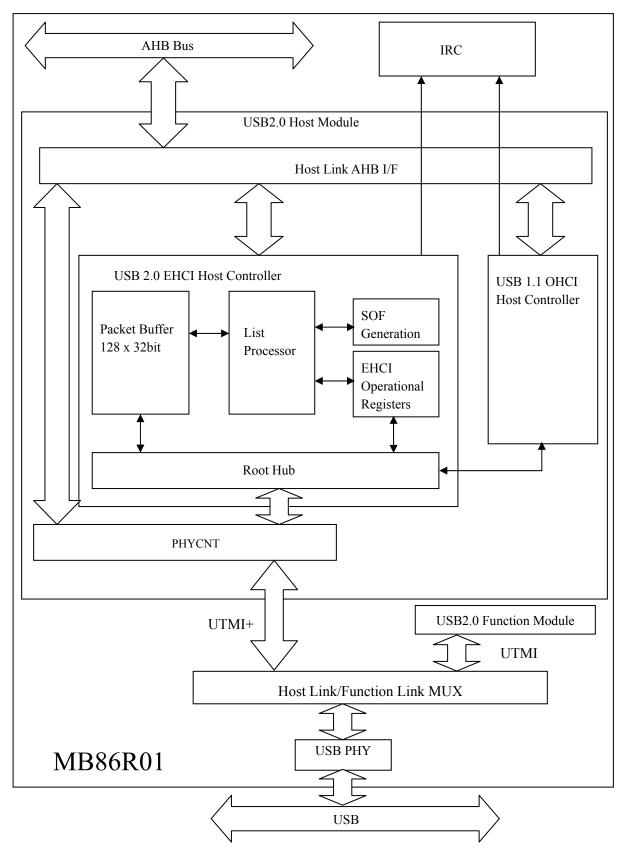


Figure 23-1 Block diagram of USB Host Controller

23.5. Supply clock

AHB clock is supplied to USB Host Controller. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the AHB clock.

23.6. Register

This section describes USB Host Controller register.

23.6.1. Register list

USB Host Controller's register is classified into following 3 groups.

- 1. EHCI Operational Registers
- 2. OHCI Operational Registers
- 3. Other Registers

Each group has following registers.

Table 23-2 EHCI Operational Registers

Address	Register	Description
FFF8_0000 _H	HCCAPBASE	Capability Register
FFF8_0004 _H	HCSPARAMS	Structural Parameter Register
FFF8_0008 _H	HCCPARAMS	Capability Parameter Register
FFF8_000C _H	Reserved	Access prohibited
FFF8_0010 _H	USBCMD	USB Command Register
$FFF8_0014_H$	USBSTS	USB Status Register
FFF8_0018 _H	USBINTR	USB Interrupt Enable Register
FFF8_001C _H	FRINDEX	USB Frame Index Register
FFF8_0020 _H	CTRLDSSEGMENT	4G Segment Selector Register
FFF8_0024 _H	PERIODICLISTBASE	Periodic Frame List Base Address Register
FFF8_0028 _H	ASYNCLISTADDR	Asynchronous List Address Register
FFF8_002C _H - FFF8_004F _H	Reserved	Access prohibited
FFF8_0050 _H	CONFIGFLAG	Configured Flag Register
FFF8_0054 _H	PORTSC_1	Port Status/Control Register
FFF8_0058 _H - FFF8_008F _H	Reserved	Access prohibited
FFF8_0090 _H	INSNREG00	Programmable Microframe Base Value Register
FFF8_0094 _H	INSNREG01	Programmable Packet Buffer OUT/IN Threshold Register
FFF8_0098 _H	INSNREG02	Programmable Packet Buffer Depth Register
FFF8_009C _H	INSNREG03	Break Memory Transfer Register
FFF8_00A0 _H	INSNREG04	Debug Register
FFF8_00A4 _H	INSNREG05	UTMI Control Status Registers
FFF8_00A8 _H - FFF8_0FFF _H	Reserved	Access prohibited

Address	Register	Description
$FFF8_{1000_{H}}$	HcRevision	Revision Register
FFF8_1004 _H	HcControl	Control Register
$FFF8_{1008_{H}}$	HcCommandStatus	Command/Status Register
FFF8_100C _H	HcInterruptStatus	Interrupt Status Register
FFF8_1010 _H	HcInterruptEnable	Interrupt Enable Register
FFF8_1014 _H	HcInterruptDisable	Interrupt Disable Register
FFF8_1018 _H	HcHCCA	HCCA Register
FFF8_101C _H	HcPeriodCurrentED	Period Current ED Register
FFF8_1020 _H	HcControlHeadED	Control Head ED Register
FFF8_1024 _H	HcControlCurrentED	Control Current ED Register
FFF8_1028 _H	HcBulkHeadED	Bulk Head ED Register
FFF8_102C _H	HcBulkCurrentED	Bulk Current ED Register
FFF8_1030 _H	HcDoneHead	Done Head Register
FFF8_1034 _H	HcFmInterval	Frame Interval Register
FFF8_1038 _H	HcFmRemaining	Frame Remaining Register
FFF8_103C _H	HcFmNumber	Frame Number Register
FFF8_1040 _H	HcPeriodicStart	Periodic Start Register
FFF8_1044 _H	HcLSThreshold	LS Threshold Register
FFF8_1048 _H	HcRhDescriptorA	Root Hub Descriptor A Register
FFF8_104C _H	HcRhDescriptorB	Root Hub Descriptor B Register
FFF8_1050 _H	HcRhStatus	Root Hub Status Register
FFF8_1054 _H	HcRhPortStatus[1]	Root Hub Port Status/Control Register 1
FFF8_1058 _H -	Reserved	Access prohibited
FFF8_1FFF _H		

 Table 23-3
 OHCI Operational Registers

Table 23-4Other Registers

Address	Register	Description
FFF8_2000 _H	LinkModeSetting	Link Mode Setting Register
FFF8_2004 _H	PHYModeSetting1	PHY Mode Setting 1 Register
FFF8_2008 _H	PHYModeSetting2	PHY Mode Setting 2 Register
FFF8_1058 _H - FFF8_1FFF _H	Reserved	Access prohibited

23.6.2. EHCI Operational Registers

23.6.2.1. HCCAPBASE (Capability Register)

Address										8_0000 _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name		HCIVERSION															
R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Initial value	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name		(Reserved)							CAPLENGTH								
R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Initial value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	

	Bit filed	Description
No.	Name	Description
31-16	HCIVERSION	EHCI revision number is indicated. 31-24: major revision number 23-16: minor revision number
15-8	(Reserved)	Reserved filed.
7-0	CAPLENGTH	Offset of operational register space is indicated.

Address								FFF8	_0004 _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)						Debug Port Number				(F	*1			
R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		N	CC			N_I	PCC		*2	(Rese	rved)	PPC		N_PC	ORTS	
R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Initial value	0	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0

HCSPARAMS (Structural Parameter Register) 23.6.2.2.

*1: P_INDICATOR *2: Port Routing Rule

	Bit filed	Description
No.	Name	Description
31-24	(Reserved)	Reserved filed.
23-20	Debug Port Number	In this module, " $0_{\rm H}$ " is read indicating debug port is not equipped.
19-17	(Reserved)	Reserved filed.
16	P_INDICATOR	Port Indicator In this module, "0" is read indicating port indicator control is not supported. 0b: Unsupported 1b: Supported
15-12	N_CC	Number of Companion Controller Number of USB1.1 Host Controller equipped is indicated. In this module, " $1_{\rm H}$ " is read indicating one USB1.1 Host Controller is installed.
11-8	N_PCC	Number of Ports per Companion Controller Number of port supported by USB1.1 Host Controller is indicated. When this field is read, "2 _H " is read indicating USB1.1 Host Controller supports 2 ports. However, this module actually supports only 1 Port1.
7	Port Routing Rule	How all ports are allocated in USB1.1 Host Controller is indicated. 0b: From the smaller port number 1b: According to the first N_PORTS element in the HCSP-PORTROUTE array In this module, "0" is read indicating port number is allocated from the smaller number.
6-5	(Reserved)	Reserved filed.
4	PPC	Port Power Control Whether Host Controller is able to control power is indicated. 0b: Disabled 1b: Enabled In this module, "1" is read indicating Host Controller is able to control power.
3-0	N_PORTS	Number of accessible port registers in the operational register space is indicated. When this field is read, " $2_{\rm H}$ " is read indicating there are 2 accessible port registers. However, this module actually supports only 1 Port1.

HCCPARAMS (Capability Parameter Register) 23.6.2.3.

Address		FFF8_0008 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				EE	СР					*	1		*2	*3	*4	*5
R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Initial value	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0

*1: Isochronous Scheduling Threshold

*2: (Reserved)

*3: Asynchronous Schedule Park Capability *4: Programmable Frame List Flag

*5: 64bit Addressing Capability

	Bit field	Description
No.	Name	Description
31-16	(Reserved)	Reserved filed.
15-8	EECP	EHCI Extended Capabilities Pointer Offset in the PCI configuration space is indicated.
7-4	Isochronous Scheduling Threshold	"0" in bit[7] indicates available micro frame for the software to update isochronous schedule.
3	(Reserved)	Reserved filed.
2	Asynchronous Schedule Park Capability	In this module, "1" is read indicating Host Controller supports Park feature to Hi-Speed queue head of the Asynchronous Schedule. 0b: Unsupported 1b: Supported
1	Programmable Frame List Flag	In this module, "1" is read indicating size can be specified with frame list size in the USBCMD register. 0b: Fixed to 1024 1b: Size is specified with frame list size in the USBCMD register
0	64bit Addressing Capability	In this module, "0" is read indicating it is 32bit address data structure. 0b: Data structure using 32bit address pointer 1b: Data structure using 64bit address pointer

23.6.2.4. USBCMD (USB Command Register)

Address								FFF8_	_0010 _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)							Interrupt Threshold Control							
R/W	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		(Rese	erved)		*1	*2	*	3	*4	*5	*6	*7	*	8	*9	RS
R/W	RO	RO	RO	RO	R/W	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0

*1: Asynchronous Schedule Park Mode Enable

*2: (Reserved)

*3: Asynchronous Schedule Park Mode Count

*4: Light Host Controller Reset

*5: Interrupt on Async Advance Doorbell

*6: Asynchronous Schedule Enable

*7: Periodic Schedule Enable

*8: Frame List Size

*9: HCRESET

	Bit field	Description
No.	Name	Description
31-24	(Reserved)	Reserved filed.
23-16	Interrupt Threshold Control	Frame interval for Host Controller to issue interrupt is set. 00_{H} : (Reserved) 01_{H} : 1 micro frame 02_{H} : 2 micro frame 04_{H} : 4 micro frame 08_{H} : 8 micro frame (= 1ms) 10_{H} : 16 micro frame (= 2ms) 20_{H} : 32 micro frame (= 4ms) 40_{H} : 64 micro frame (= 8ms)
		Writing other values is prohibited.
15-12	(Reserved)	Reserved filed.
11	Asynchronous Schedule Park Mode Enable	In this module, Asynchronous Park Capability bit of the HCCPARAMS register is "1"; therefore, this is readable/writable bit. 0b: Park mode is disabled 1b: Park mode is enabled
10	(Reserved)	Reserved filed.
9-8	Asynchronous Schedule Park Mode Count	In this module, Asynchronous Park Capability bit of the HCCPARAMS register is "1"; therefore, this is readable/writable bit. Valid values are $1_{\rm H}$ - $3_{\rm H}$. Writing $0_{\rm H}$ is prohibited.
7	Light Host Controller Reset	EHCI Host Controller is reset without affecting to port state and OHCI Host Controller. [At reading] 0b: Reset of Light Host Controller is completed 1b: Light Host Controller is in reset
6	Interrupt on Async Advance Doorbell	This bit sets to issue interrupt notifying the Host Controller to go to the next Asynchronous Schedule. After setting "1" to interrupt of interrupt on Async Advance bit of the USBSTS register, Host Controller sets "0" in this bit. When the Asynchronous Schedule is disabled, "1" cannot be written in this bit.
5	Asynchronous Schedule Enable	This bit controls whether Host Controller should skip the Asynchronous Schedule process. 0b: Asynchronous Schedule process is skipped. 1b: Asynchronous Schedule is processed.
4	Periodic Schedule Enable	This bit controls whether Host Controller should skip the Periodic Schedule process. 0b: Periodic Schedule process is skipped 1b: Periodic Schedule is processed.

	Bit field	Description
No.	Name	Description
3-2	Frame List Size	In this module, Programmable Frame List Flag of the HCCPARAMS register is "1"; therefore, this is readable/writable bit. This bit specifies frame list size. 00b: 1024 elements (4096bytes) 01b: 512 elements (2048bytes) 10b: 256 elements (1024bytes) 11b: Reserved
1	HCRESET	Host Controller Reset When "1" is written in this bit, Host Controller starts initialization of pipeline, timer, counter, state machine, and others. In addition, initial value is set to the port register and the port state machine. Then ownership of the port returns to USB1.1 Host Controller. After the reset, this bit is set to "0" by the controller. When HCHalted bit of the USBSTS register is "0", do not write "1" in this bit.
0	RS	Run/Stop When "1" is written to this bit, Host Controller executes the schedule. When "0" is written, the controller stops the process after completing current transaction. 0b: Stop 1b: Run If HCHalted bit of the USBSTS register is "0", do not write "1" in this bit.

23.6.2.5. USBSTS (USB Status Register)

Address		FFF8_0014 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	*1	*2	*3	*4			(Rese	erved)			*5	*6	*7	*8	*9	*10
R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

*1: Asynchronous Schedule Status

*2: Periodic Schedule Status

*3: Reclamation

*4: HCHalted

*5: Interrupt on Async Advance

*6: Host System Error

*7: Frame List Rollover

*8: Port Change Detect

*9: USBERRINT

*10: USBINT

	Bit field	Description
No.	Name	Description
31-16	(Reserved)	Reserved field.
15	Asynchronous Schedule Status	Current state of the Asynchronous Schedule is indicated. 0b: Asynchronous Schedule is disabled 1b: Asynchronous Schedule is enabled
14	Periodic Schedule Status	Current state of the Periodic Schedule is indicated. 0b: Periodic Schedule is disabled 1b: Periodic Schedule is enabled
13	Reclamation	Whether the Asynchronous Schedule is empty is indicated.
12	HcHalted	When RS (Run/Stop) bit of the USBCMD register is "1", this bit becomes "0". In this case, Host Controller stops the process after completing current transaction and sets "1" to this bit.
11-6	(Reserved)	Reserved field.
5	Interrupt on Async Advance	When "1" is written to Async Advance Doorbell bit of the USBCMD register, Host Controller issues interrupt at the next Asynchronous Schedule process. This bit is cleared by writing "1".
4	Host System Error	When Host Controller accesses to memory and error response occurs, or "1" is set to Sys_interrupt bit of the CCNT module's USB setting register (CUSB), this bit is set to "1". In this case, "0" is set to the RS (Run/Stop) bit of the USBCMD register to prevent Host Controller from executing the schedule. This bit is cleared by writing "1".
3	Frame List Rollover	When Frame List Index value returns to "0" from the max. value, Host Controller sets "1" to this bit. This bit is cleared by writing "1".
2	Port Change Detect	 Host Controller sets "1" to this bit in the following conditions: When the port, whose Port Owner bit is set to "0" is changed from "0" to "1" When Force Port Resume bit value is changed from "0" to "1" as a result of detecting J-K transition in the suspending port When EHCI releases the port by writing "1" to Port Owner bit This bit is cleared by writing "1".
1	USBERRINT	USB Error Interrupt When USB transfer ends due to error, Host Controller sets this bit to "1". If the TD on which the error interrupt occurred also had its IOC bit set, both this bit and USBINT bit are set to "1". This bit is cleared by writing "1".

	Bit field	Description							
No.	Name	Description							
0		When USB transfer is completed and Transfer Descriptor where IOC bit is set retires, Host Controller sets this bit to "1". The Host Controller also sets this bit to "1" when short packet is detected. This bit is cleared by writing "1".							

23.6.2.6. USBINTR (USB Interrupt Enable Register)

																1
Address								FFF8	$_0018_{\rm H}$							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					(Rese	erved)					*1	*2	*3	*4	*5	*6
R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*1: Interrupt on Async Advance Enable

*2: Host System Error Enable

*3: Frame List Rollover Enable

*4: Port Change Interrupt Enable

*5: USB Error Interrupt Enable

*6: USB Interrupt Enable

	Bit field	Description
No.	Name	Discription
31-6	(Reserved)	Reserved field.
5	Interrupt on Async Advance Enable	Interrupt by Interrupt on Async Advance bit of the USBSTS register is enabled. 0b: Disabled 1b: Enabled
4	Host System Error Enable	Interrupt by Host System Error bit of the USBSTS register is enabled. 0b: Disabled 1b: Enabled
3	Frame List Rollover Enable	Interrupt by Frame List Rollover bit of the USBSTS register is enabled. 0b: Disabled 1b: Enabled
2	Port Change Interrupt Enable	Interrupt by Port Change Detect bit of the USBSTS register is enabled. 0b: Disabled 1b: Enabled
1	USB Error Interrupt Enable	Interrupt by USBERRINT bit of the USBSTS register is enabled. 0b: Disabled 1b: Enabled
0	USB Interrupt Enable	Interrupt by USBINT bit of the USBSTS register is enabled. 0b: Disabled 1b: Enabled

Address		FFF8_001C _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Rese	erved)							Frame	Index						
R/W	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

23.6.2.7.	FRINDEX (USB Frame Index Register)
-----------	------------------------------------

	Bit field		D	escript	ion
No.	Name		D	1011	
31-14	(Reserved)	Reserved field.			
13-0	Frame Index	Bits [N:3] are used for	incremented at the end current frame list num USBCMD register as sh Number Elements (1024) (512) (256) Reserved	ber. N	value is determined in accordance with Frame

23.6.2.8. CTRLDSSEGMENT (4G Segment Selector Register)

Address		FFF8_0020 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							CT	RLDSS	SEGME	NT						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		CTRLDSSEGMENT														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description							
No.	Name	Description							
31-0		Control Data Structure Segment Register This register corresponds to the address bit [63:32] of the EHCI data structure. In this module, 64bit Addressing Capability bit of the HCCPARAMS register is "0". Therefore, this register is not usable.							

23.6.2.9.	PERIODICLISTBASE (Periodic Frame List Base Address Register)
-----------	--

Address		FFF8_0024 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								Base A	ddress							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		Base A	ddress							(Rese	erved)					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description							
No.	Name	Description							
31-12	Base Address	Base address of Periodic Frame List in the memory area is set.							
11-0	()	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".							

23.6.2.10. ASYNCLISTADDR (Asynchronous List Address Register)

Address		FFF8_0028 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							L	ink Poi	nter Lo	w						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		Link Pointer Low (Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	RO	RO	RO
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description							
No.	Name	Description							
31-5	Link Pointer Low	Queue head address of the Asynchronous Schedule to be executed next is stored.							
4-0	(Reserved)	Reserved field.							

					•	•		•	•							
Address		FFF8_0050 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R?W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							(F	Reserve	d)							CF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description							
No.	Name	Description							
31-1	()	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".							
0	CF	Configure Flag This bit controls the port routing. Set this bit to "1" at the end of the Host Controller setting. 0b: The OHCI controller owns the port routing control. 1b: The EHCI controller owns the port routing control.							

23.6.2.12. PORTSC_1 (Port Status/Control Register 1)

Address		FFF8_0054 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved) *1 *2 *3 Port Test Con									t Contro	ol					
R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	*	4	*5	РР	Line	Status	*6	*7	*8	*9	*10	*11	*12	*13	*14	*15
R/W	R/W	R/W	R/W	R/W	RO	RO	RO	R/W	R/W	R/W	R/W	RO	R/W	R/W	R/W	RO
Initial value	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

*1: WKOC_E

*2: WKDSCNNT_E

*3: WKCNNT_E

*4: Port Indicator Control

*5: Port Owner

*6: (Reserved)

*7: Port Reset

*8: Suspend

*9: Force Port Resume

*10: Over-current Change

*11: Over-current Active

*12: Port Enable/Disable Change

*13: Port Enable/Disable

*14: Connect Status Change

*15: Current Connect Status

	Bit field		Description								
No.	Name		Description								
31-23	(Reserved)	Reserved field.									
22	WKOC_E	Setting "1" to this bit	ake on Over-current Enable tting "1" to this bit enables to use over-current status as wake-up event. hen Port Power is "0", this field is "0".								
21	WKDSCNNT_E	Wake on Disconnect Setting "1" to this bit When Port Power is '	enables to use disconnect event as wake-up event.								
20	WKCNNT_E	Wake on Connect En Setting "1" to this bit When Port Power is '	enables to use connect event as wake-up event.								
19-16	Port Test Control	When this field is "00	whether port mode should be test mode. 2000b", the port mode is not test mode. When this field is other than the value, the test mode shown below.								
		Bits	Test Mode								
		0000b	Test mode not enable								
		0001b	Test J_STATE								
		0010b	Test K_STATE								
1		0011b	Test SE0_NAK								
		0100b 0101b	Test packet Test FORCE ENABLE								
		0110b - 1111b	(Reserved)								
		01100 - 11110									

FUJITSU

	Bit field		D	•							
No.	Name	1	Desci	ription							
15-14	Port Indicator Control	In this module, P_INDIC prohibited.	ATOR bit of the HCPA	RAMS register is "0". Writing "1" to these	bits is						
		Bits	Meaning								
		Obb Port Indicators are off									
		01b Amber									
		10b Green									
		11b Undefined									
		When Port Power is "0", this field is "0".									
13	Port Owner	Host Controller with port ownership is indicated. When CF (Configure Flag) bit of the CONFIGFLAG register changes from "0" to "1", the va of this bit becomes "0". When CF bit is "0", this bit becomes "1". 0b: EHCI Host Controller owns the port 1b: OHCI Host Controller owns the port									
12	РР	Port Power The bit function depends	on PPC (Port Power Co	ontrol) bit value of the HCSPARAMS registed	er.						
		PPC PP		Operation							
		0b 1b		ble to control port power.							
		1b 1b/0b	Host Controller is able								
			PP=0b: Port power of PP=1b: Power of PP=								
				rt is off, the port does not							
			function. Moreover, th								
			connection/disconnect	ion is not notified.							
			If over-current is detec	ted, this bit becomes "0".							
		a									
11-10	Line Status	State of USB port's signal	l wire is indicated.								
		Bits[11:10] USE	3 state								
		00b SE0									
			ГАТЕ								
		01b K_S	STATE								
		11b Und	efined								
		When Dort Dower is "0"	volue of this field is up	defined							
9	(Reserved)	When Port Power is "0", Reserved field.	value of this field is the	lenned.							
			1 " to this hit the has as	set sequence is started. Software writes a "0"	11 4 -						
8	Port Reset	this bit to terminate the b		set sequence is started. Software writes a 0	10						
		0b: Not Reset	as reservequence.								
		1b: Reset									
		When Port Power is "0",									
7	Suspend	-		nable/Disable bit and Suspend bit of this reg	gister.						
			Bits	Port State							
		Port Enable/Disable	Suspend X	Disable							
		1	0	Enable							
		1 1 Suspend									
		Writing "0" to Suspend bit is invalid. When Port Power is "0", this field is "0".									
6	Force Port Resume	Writing "1" when this bit On the other hand, writin 0b: No resume (K-Stat	g "0" when this bit is "1 e)	" terminates resume.							
		1b: Resume detection/o When Port Power is "0",									
5	Over-current	When Over-current Activ		s hit is set to "1"							
5	Change	This bit is cleared to "0" l									

	Bit field	Description
No.	Name	Description
4	Over-current Active	Whether the state is over-current is indicated. 0b: Not over-current status 1b: Over-current status
3	Port Enable/Disable Change	This bit is set to "1" only when port status is disabled at EOF2 point due to a port error. When this bit is set, Port Enable/Disable bit is cleared to "0". This bit is cleared to "0" by writing "1". When Port Power is "0", this field is "0".
2	Port Enable/Disable	Port can only be enabled by Host Controller. Software cannot enable a port by writing "1" to this bit. Only when the device connected with reset sequence is recognized as high-speed, Host Controller sets this bit to "1". 0b: Port is disabled. 1b: Port is enabled. When Port Power is "0", this field is "0".
1	Connect Status Change	Current Connect Status changed at port is indicated. This bit is cleared to "0" by writing "1". 0b: No change in Current Connect Status 1b: Change in Current Connect Status When Port Power is "0", this field is "0".
0	Current Connect Status	Device connection state on the port is indicated. 0b: Device is not connected. 1b: Device is connected.

23.6.2.13.	INSNREG00	(Programmable Microframe Base	Value Register)
------------	-----------	-------------------------------	-----------------

Address		FFF8_0090 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Rese	erved)							-							-
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description							
No.	Name	Description							
31-14	(Reserved)	Reserved field.							
13-1	-	The length of 1 micro frame is set. Example) When " $1D4C_{H}$ " is set to this field, 1 micro frame becomes $125\mu s$.							
0	-	This register function is enabled. 0b: Disabled 1b: Enabled							

23.6.2.14. INSNREG01 (Programmable Packet Buffer OUT/IN Threshold Register)

Address		FFF8_0094 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		OUT Threshold														
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								IN Th	reshold							
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

	Bit field	Description								
No.	Name	Discription								
31-16	OUT Threshold	Host Controller starts transfer to USB when number of byte of the data set to this field is gotten from the system memory. Unit: DWORD Min. value: 16 bytes (0004 _H) Max. value: [INSNREG02 setting value - 2] Example) When 80 _H is set to INSNREG02, the maximum value that can be set to this field is 7E _H .								
15-0	IN Threshold	Host Controller starts transfer to memory when number of byte of the data set to this field is stored to packet buffer. Unit: DWORD Min. value: 16 bytes (0004 _H) Max. value: [INSNREG02 setting value - 2] Example) When 80 _H is set to INSNREG02, the maximum value that can be set to this field is 7E _H .								

INSNREG01/INSNREG02 register setting value and Host Controller operation

1. Bulk transfer

OUT transfer		
INSNREG01[31:16]	INSNREG02	Host Controller operation
0080 _H	80 _H	This setting is not able to be used.
0040 _H	80 _H	Host Controller starts transfer to USB when the data of 256bytes
		is gotten from the memory.

IN transfer

INSNREG01[15:0]	INSNREG02	Host Controller operation
0080_{H}	$80_{\rm H}$	This setting is not able to be used.
0040 _H	80 _H	Host Controller starts transfer to memory when the data of 256bytes is stored to packet buffer.
0004 _H	80 _H	Host Controller starts transfer to memory when the data of
	•••	16bytes is stored to packet buffer.

2. Isochronous/Interrupt transfer

OUT transfer

INSNREG01[31:16]	INSNREG02	Host Controller operation
0080_{H}	$80_{ m H}$	This setting is not able to be used.
0040 _H	$80_{ m H}$	Host Controller starts transfer to USB when the data of 256bytes is gotten from the memory.

IN transfer

INSNREG01[15:0]	INSNREG02	Host Controller operation
0080 _H	80 _H	This setting is not able to be used.
0040 _H	80 _H	Host Controller starts transfer to memory when the data of
		256bytes is stored to packet buffer.

3. Control transfer

OUT transfer

INSNREG01[31:16]	INSNREG02	Host Controller operation
0080_{H}	$80_{ m H}$	This setting is not able to be used.
0004 _H	$80_{ m H}$	Host Controller starts transfer to USB when the data of 16bytes is gotten from the memory.

IN transfer

INSNREG01[15:0]	INSNREG02	Host Controller operation
$0080_{ m H}$	$80_{\rm H}$	This setting is not able to be used.
0004 _H	80 _H	Host Controller starts transfer to memory when the data of 16bytes is stored to packet buffer.

Transfer timing from packet buffer of short packet that is less than the threshold set to INSNREG01

- OUT transfer: after the short packet data is written from the memory on the AHB bus to the packet buffer, transferring from the packet buffer to USB is started.
- IN transfer: after the short packet data is written from USB to the packet buffer, transferring from the packet buffer to the memory on the AHB bus is started.

23.6.2.15.	INSNREG02	(Programmable Packet	Buffer Depth Register)
------------	-----------	----------------------	------------------------

Address		FFF8_0098 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		(Rese	rved)		INSNREG02											
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

	Bit field	Description					
No.	Name	Description					
31-12	(Reserved)	Reserved field.					
11-0	INSNREG02	acket buffer depth is defined in DWORD unit.					

FUJITSU SEMICONDUCTOR CONFIDENTIAL 23-22

Address	FFF8_009C _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)															
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			(F	Reserve	d)			Time-Available Offset								*1
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*1: (Reserved)

	Bit field	Description						
No.	Name	Description						
31-9	(Reserved)	Reserved field.						
8-1	Time-Available Offset	Reserved field. Writing the value other than " $00_{\rm H}$ " is prohibited.						
0	(Reserved)	Reserved field. Writing "1" is prohibited.						

23.6.2.17. INSNREG04 (Debug Register)

Address		FFF8_00A0 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					(F	Reserve	d)					-	-	-	-	-
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-5	(Reserved)	Reserved field.
4	-	NAK reload fix is controlled. 0b: NAK reload fix is enabled. 1b: NAK reload fix is disabled.
3	(Reserved)	Reserved field.
2	-	Measurement function at the port enumeration time When this function is enabled, the Device Chirp detection time becomes about 3.5µs and the width of Host Chirp becomes about 400ns. If Device Chirp continues about 19µs or more when this function is valid, Host Controller is not detected as Device Chirp. Therefore, set the duration of Device Chirp within 19µs. 0b: Measurement function is invalid. (Normal operation) 1b: Measurement function is valid. (Simulation etc.)
1	-	Writing control function of HCCPARAMS register 0b: Writing is not possible. 1b: Writing is possible.
0	-	Writing control function of HCSPARAMS register 0b: Writing is not possible. 1b: Writing is possible.

R/W R/W R/W R/W

0

0

16 *1 R/W 0 0

RO

0

RO

0

RO

0

RO

0

RO

0

	-	_			-					J -	- /				
Address								FFF8_	00A4 _H						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
Name							(Rese	erved)							*1
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	RO
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Name	(I	Reserve	d)	*1		(Rese	erved)					(Rese	erved)		

R/W R/W

0

0

23.6.2.18. INSNREG05 (UTMI Control Status Register)

0

Initial value *1: (Reserved)

0

0

R/W

	Bit field	Description
No.	Name	Description
31-18	(Reserved)	Reserved field.
17	(Reserved)	Reserved field.
16-13	(Reserved)	Reserved field.
12	(Reserved)	Reserved field.
11-8	(Reserved)	Reserved field.
7-0	(Reserved)	Reserved field.

R/W

0

RO

0

RO

0

RO

0

23.6.3. OHCI Operational Registers

23.6.3.1. HcRevision (Revision Register)

Address								FFF8	$1000_{\rm H}$							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)							RI	EV			
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

	Bit field	Description
No.	Name	Description
31-8	(Reserved)	Reserved field.
7-0	REV	Version of OHCI specification is indicated.

23.6.3.2. HcControl (Control Register)

This register sets an operating mode of Host Controller. Bits other than RemoteWakeupConnected are rewritable only by Host Controller Driver.

Address		FFF8_1004 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		(F	Reserve	d)		RWE	RWC	IR	HC	CFS	BLE	CLE	IE	PLE	CE	SR
R/W	-	-	-	-	•	R/W										
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	- Description
31-11	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
10	RWE	RemoteWakeupEnable When Host Controller supports the remote wake up signal, this bit enables its operation.
9	RWC	RemoteWakeupConnected This bit indicates whether Host Controller supports the remote wake up signal.
8	IR	InterruptRouting This bit determines the route of generating an interrupt. 0b: Normal interrupt route 1b: SMI (System Management Interrupt) route
7-6	HCFS	HostControllerFunctionalState This field indicates the operation status of Host Controller. When the resume signal from DownPort is detected, Host Controller changes the value of this field from USBSuspend to USBResume.
		HCFSOperation status00bUSBReset01bUSBResume10bUSBOperational11bUSBSuspend
5	BLE	BulkListEnable Writing "1" to this bit enables Bulk list processing.
4	CLE	ControlListEnable Writing "1" to this bit enables Control list processing.
3	IE	IsochronousEnable Even if PeriodicListEnable is "1" when this bit is cleared, the Isochronous list processing is disabled. In this case, Interrupt ED is processed. Host Controller checks this bit before processing Isochronous ED.
2	PLE	PeriodicListEnable Writing "1" to this bit enables Periodic (Interrupt and Isochronous) list processing. Host Controller checks this bit before the periodic transfer of the frame.
1-0	CBSR	ControlBulkServiceRatio The number of times of the service of each Bulk Endpoint to Control Endpoint is specified. N-1 indicates the service of N times to Control Endpoint. Example) "00b"=1 Control Endpoint, "11b"=4 Control Endpoint

23.6.3.3. HcCommandStatus (Command/Status Register)

This register reflects the state of Host Controller. Moreover, this register is used to receive the command from which Host Controller is issued by Host Controller Driver.

Address		FFF8_1008 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							(Rese	erved)							SC	DC
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Rese	erved)						OCR	BLF	CLF	HCR
R/W	-	-	-	-	-	-	-	-	-	-	-	-	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1	Bit field	Description
No.	Name	Description
31-18	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
17-16	SOC	SchedulingOverrunCount This field is incremented every time ScheduleOverrun bit of HcInterruptStatus register is set. When the count value reaches to "11b", it returns to "00b".
15-4	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
3	OCR	OwnershipChangeRequest When "1" is written to this bit by software, Host Controller sets OwnershipChange of HcInterruptStatus register. This bit is cleared by software.
2	BLF	BulkListFilled This bit is set to "1" by software or Host Controller, and indicates that active ED exists in the Bulk list. When this bit is "1", Host Controller starts the processing of the head of Bulk list, and clears this bit to "0" every time it is processed.
1	CLF	ControlListFilled This bit is set to "1" by software or Host Controller, and indicates that active ED exists in the Control list. When this bit is "1", Host Controller starts the processing of the head of Control list, and clears this bit to "0" every time it is processed.
0	HCR	HostControllerReset When "1" is written to this bit, Host Controller starts software reset. When the reset process is completed, this bit is cleared to "0".

23.6.3.4. HcInterruptStatus (Interrupt Status Register)

This register indicates the state of the hardware interrupt factor. To generate the hardware interrupt, MasterInterruptEnable bit of HcInterruptEnable register is set.

Host Controller can set each bit of this register, but it can not be cleared.

Host Controller Driver can clear the bit by writing "1" to each bit of this register, but it can not be set.

Address		FFF8_100C _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	*1	OC							(Res	erved)						
R/W	-	R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(F	Reserve	d)				RHSC	FNO	UE	RD	SF	WDH	SO
R/W	-	-	-	-	-	-	-	-	•	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*1: (Reserved)

	Bit field	Description
No.	Name	Description
31	(Reserved)	Reserved field. Always write "0" to this bit. The reading value always becomes "0".
30	OC	OwnershipChange When OwnershipChangeRequest bit of the HcCommandStatus register is set, this bit is set to "1".
20-7	(Reserved)	Reserved field. Always write "0" to this bit. The reading value always becomes "0".
6	RHSC	RootHubStatusChange When HcRhStatus or HcRhPortStatus register contents are changed, this bit is set to "1".
5	FNO	FrameNumberOverflow When Bit 15 of FrameNumber is changed, this bit is set to "1".
4	UE	UnrecoverableError When Host Controller accesses to memory and an error response occurs, or Sys_interrupt bit of the CCNT module's USB setting register (CUSB) is set, this bit is set to "1".
3	RD	ResumeDetected When this module detects the resume signal in the port, this bit is set to "1".
2	SF	StartofFrame When the Frame Management block generates the event signal of "Start of Frame", this bit is set to "1".
1	WDH	WritebackDoneHead When writing the content of the HcDoneHead register to the HccaDoneHead is completed, this bit is set to "1".
0	SO	SchedulingOverrun When ListProcessor detects the generation of ScheduleOverrun, this bit is set to "1".

23.6.3.5. HcInterruptEnable (Interrupt Enable Register)

This register controls the generation of the hardware interrupt.

The hardware interrupt becomes valid by setting the interrupt factor, and setting the MIE bit.

Address	FFF8_1010 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MIE	OC	(Reserved)													
R/W	R/W	R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved)								RHSC	FNO	UE	RD	SF	WDH	SO	
R/W	-	-	-	-	-	-	-	-	-	R/W						
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit field		Description					
No.	Name	— Description					
31	MIE	MasterInterruptEnable This bit enables the interrupt of the entire OHCI. Writing "1" to this bit enables the interrupt due to other bits of this register.					
30	OC	OwnershipChangeEnable 0b: Invalid 1b: Interrupt due to "Ownership Change" is enabled.					
29-7	(Reserved)	Reserved field.					
6	RHSC	RootHubStatusChangeEnable 0b: Invalid 1b: Interrupt due to "Root Hub Status Change" is enabled.					
5	FNO	FrameNumberOverflowEnable 0b: Invalid 1b: Interrupt due to "Frame Number Overflow" is enabled.					
4	UE	UnrecoverableErrorEnable 0b: Invalid 1b: Interrupt due to "UnrecoverableError" is enabled.					
3	RD	ResumeDetectedEnable 0b: Invalid 1b: Interrupt due to "Resume Detected" is enabled.					
2	SF	StartOfFrameEnable 0b: Invalid 1b: Interrupt due to "Start Of Frame" is enabled.					
1	WDH	WritebackDoneHeadEnable 0b: Invalid 1b: Interrupt due to "Writeback Done Head" is enabled.					
0	SO	SchedulingOverrunEnable 0b: Invalid 1b: Interrupt due to "Schedule Overrun" is enabled.					

23.6.3.6. HcInterruptDisable (Interrupt Disable Register)

This register is coupled with the HcInterruptEnable register.

Writing "1" to a bit in this register clears the corresponding bit in the HcInterruptEnable register, whereas writing "0" to a bit in this register leaves the corresponding bit in the HcInterruptEnable register unchanged. When this register is read, the value of the HcInterruptEnable register is returned.

Address	-	FFF8_1014 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	MIE	OC							(Rese	erved)						
R/W	R/W	R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(F	Reserve	d)				RHSC	FNO	UE	RD	SF	WDH	SO
R/W	-	-	-	-	-	-	-	-	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31	MIE	This bit disables the interrupt of the entire OHCI. Writing "1" to this bit disables the interrupt due to other bits of this register.
30	OC	0b: Invalid 1b: Interrupt due to "Ownership Change" is disabled.
29-7	(Reserved)	Reserved field.
6	RHSC	0b: Invalid 1b: Interrupt due to "Root Hub Status Change" is disabled.
5	FNO	0b: Invalid 1b: Interrupt due to "Frame Number Overflow" is disabled.
4	UE	0b: Invalid 1b: Interrupt due to "Unrecoverable Error" is disabled.
3	RD	0b: Invalid 1b: Interrupt due to "Resume Detected" is disabled.
2	SF	0b: Invalid 1b: Interrupt due to "Start Of Frame" is disabled.
1	WDH	0b: Invalid 1b: Interrupt due to "Writeback Done Head" is disabled.
0	SO	0b: Invalid 1b: Interrupt due to "Schedule Overrun" is disabled.

23.6.3.7. HcHCCA (HCCA Register)

This register indicates the physical address of the Host Controller Communication Area. The minimum alignment is 256 bytes; therefore, low order 7-0 bits are fixed to $00_{\rm H}$.

For Host Controller Communication Area, refer to Chapter 4 of "OpenHCI specifications".

Address								FFF8	F8_1018 _H								
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name		НССА															
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name				HC	CA							(Rese	erved)				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	R	
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

	Bit field	Description
No.	Name	Description
31-8	НССА	HCCA This is a pointer to the HCCA base address.
7-0	(Reserved)	Reserved field.

23.6.3.8. HcPeriodCurrentED (Periodic Current ED Register)

This register indicates the physical address of the current Isochronous or Interrupt Endpoint Descriptor.

Address								FFF8_	101C _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								PC	ED							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						PC	ED							(Rese	erved)	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-4	PCED	PeriodCurrentED This is a pointer to the current Periodic list ED.
3-0		Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".

23.6.3.9. HcControlHeadED (Control Head ED Register)

This register indicates the physical address of the first Endpoint Descriptor of the Control list.

Address		FFF8_1020 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		CHED														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						CH	ED							(Rese	erved)	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-4	CHED	ControlHeadED This is a pointer to the Control List Head ED.
3-0	()	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".

23.6.3.10. HcControlCurrentED (Control Current ED Register)

This register indicates the physical address of the current Endpoint Descriptor of the Control list.

Address		FFF8_1024 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								CC	ED							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						CC	ED							(Rese	erved)	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-4		ControlCurentED This is a pointer to the current Control list ED. Only when BulkListEnable of the HcControl register is "0", writing to these bits is available. When ControlListEnable of the HcControl register is "1", these bits become a read only.
3-0	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".

23.6.3.11. HcBulkHeadED (Bulk Head ED Register)

This register indicates the physical address of the first Endpoint Descriptor of the Bulk list.

Address		FFF8_1028 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								BH	ED							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						BH	ED							(Rese	erved)	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-4	BHED	HcBulkHeadED This is a pointer to the Bulk List Head ED.
3-0		Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".

23.6.3.12. HcBulkCurrentED (Bulk Current ED Register)

This register indicates the physical address of the current Endpoint Descriptor of the Bulk list.

Address		FFF8_102C _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								BC	ED							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						BC	ED							(Rese	erved)	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-4		BulkCurrentED This is a pointer to the current Bulk list ED. Only when BulkListEnable of the HcControl register is "0", writing to these bits is available. When ControlListEnable of the HcControl register is "1", these bits become a read only.
3-0	(Reserveed)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".

23.6.3.13. HcDoneHead (Done Head Register)

This register indicates the physical address of the last completed Transfer Descriptor that was added to the Done queue.

Address		FFF8_1030 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								D	H							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						D	Н							(Rese	erved)	
R/W	R	R	R	R	R	R	R	R	R	R	R	R	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-4	DH	DoneHead This is a pointer to the Done Head ED.
3-0	()	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".

23.6.3.14. HcFmInterval (Frame Interval Register)

Bit13-0 of this register indicates the bit time interval in a frame, (i.e., between two consecutive SOFs), and Bit30-16 indicates the maximum packet size that can be transferred without causing Schedule Overrun.

Address								FFF8_	1034 _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	FIT								FSMPS	1						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Rese	erved)							F	ΓI						
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	1	0	1	1	1	0	1	1	0	1	1	1	1	1

	Bit field	Description
No.	Name	Description
31	FIT	FrameIntervalToggle Host Controller Driver toggles this bit value whenever it loads a new value into the FrameInterval field.
30-16	FSMPS	FSLargestDataPacket This field specifies a value which is loaded into the Largest Data Packet Counter at the beginning of each frame.
15-14	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
13-0	FI	This field specifies the length of the frame. Frame length = bit time - 1 Example) When one frame is 12,000 bit time, 11,999 is specified.

23.6.3.15. HcFmRemaining (Frame Remaining Register)

This register is a 14bit down counter indicating the bit time remaining in the current Frame.

Address								FFF8	1038 _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	FRT							(F	Reserve	d)						
R/W	R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Rese	erved)							F	R						
R/W	-	-	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31	FRT	FrameRemainingToggle This bit is loaded from the FrameIntervalToggle bit value of HcFmInterval register whenever FrameRemaining field reaches "0".
30-14	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
13-0	FR	FrameRemaining When this module is USBOprerational state, this 14bit field is decremented at 12MHz clock cycle. When the count value reaches "0" (end of the frame), the FrameInterval field value of the HcFmInterval register is loaded into this field. When entering the USBOprerational state, the FrameInterval field value is loaded into this field.

23.6.3.16. HcFmNumber (Frame Number Register)

This register is a 16bit counter. It provides a timing reference among events happening in the Host Controller and the Host Controller Driver.

Address								FFF8_	103C _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								F	N							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-16	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
15-0		FrameNumber This field is 16bit increment counter which is incremented whenever the FrameInterval field value of the HcFmInterval register is loaded into the FrameRemaining field of the HcFmRemaining register. It will be rolled over to $0_{\rm H}$ after FFFF _H .

23.6.3.17. HcPeriodicStart (Periodic Start Register)

A 14bit value of this register determines the earliest time that Host Controller should start the processing of Periodic list.

Address								FFF8	_1040 _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Rese	erved)		PS												
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-14		Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
13-0	PS	This field does the time setting that Host Controller starts the processing of Periodic list in the frame.

23.6.3.18. HcLSThreshold (LS Threshold Register)

An 11bit value of this register is used to determine whether Host Controller transmits an 8bytes LS packet before EOF.

Address		FFF8_1044 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved)					LST										
R/W	-	-	-	R	R/W											
Initial value	0	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0

	Bit field	Description
No.	Name	Description
31-12	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
11-0		LSThreshold This field sets the value to determine whether Host Controller starts Low Speed transaction in a current frame. The transaction is started only if the FrameRemaining field value of the HcFmRemaining register is larger than this field value.

23.6.3.19. HcRhDescriptorA (Root Hub Descriptor A Register)

This register is the first register of two describing the setting of the Root Hub.

Address								FFF8_	1048 _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		POTPGT							(Reserved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-	-	-	-	-	-	-	-
Initial value	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(R	Reserve	d)	NOCP	OCPM	DT	NPS	PSM	1 NDP							
R/W	-	-	-	R/W	R/W	R	R/W	R/W	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0

	Bit field	Description
No.	Name	Description
31-24	POTPGT	PowerOnToPowerGoodTime This field specifies the duration Host Controller Driver has to wait before accessing a powered-on port of the Root Hub. The unit of time is 2ms.
23-13	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
12	NOCP	NoOverCurrentProtection This bit specifies how the over-current status for the Root Hub port is reported. 0b: Over-current status is reported. 1b: Over-current status is not reported.
11	OCPM	OverCurrentProtectionMode This bit is valid only if the NoOverCurrentProtection bit is "0". 0b: Over-current status is reported collectively for all ports. 1b: Over-current status is reported per port.
10	DT	DeviceType This bit specifies that the Root Hub is not a compound device. The Root Hub is not permitted to be a compound device. This bit is fixed to "0".
9	NPS	NoPowerSwitching This bit specifies whether Root Hub port's power switching is supported or port is always powered. 0b: Port's power can be switched. 1b: Port is always powered on.
8	PSM	PowerSwitchingMode This bit specifies the method of Root Hub port's power switching. This bit is valid only if the NoPowerSwitching bit is "0". 0b: All ports are powered at the same time. 1b: Each port is powered individually.
7-0	NDP	NumberDownstreamPorts This field indicates the number of downstream ports of Root Hub. Read value of this field is $2_{\rm H}$ (indicating 2 ports are supported); however, this module actually supports only port1.

23.6.3.20. HcRhDescriptorB (Root Hub Descriptor B Register)

This register is the second register of two describing the setting of the Root Hub.

Address		FFF8_104C _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		PPCM														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		DR														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

I	Bit field	Description								
No.	Name	Description								
31-16	РРСМ	ortPowerControlMask his field indicates if a port is affected by a Global Power Control command. /hen NoPowerSwitching bit is "0" and PowerSwitchingMode bit is "1", this field becomes 0b: Port is affected by a Global Power Control command. 1b: Port is not affected by a Global Power Control command. orrespondence of bit in the port and the field is as follows.								
		Bit Port								
		16 Reserved								
		17 Port1								
		18 This bit indicates port2; however, this module actually supports only port1.								
		19-31Not supported by this module.Be sure to write "0" to these bits. The reading value always becomes "0".								
15-0	DR	DeviceRemovable Whether the device connected to the Root Hub port is detachable is specified. 0b: Device is detachable. 1b: Device is not detachable. Correspondence of bit in the port and the field is as follows. Bit Port 0 Reserved 1 Port1 2-15 Not supported by this module. Be sure to write "0" to these bits. The reading value always becomes "0".								

23.6.3.21. HcRhStatus (Root Hub Status Register)

This register is divided into two parts. The lower 16bit represents the Hub Status field and the upper 16bit represents the Hub Status Change field.

Address		FFF8_1050 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	CRWE						(F	Reserve	d)						OCIC	LPSC
R/W	W	-	-	-	-	-	-	-	-	-	-	-	-	-	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DRWE						(F	Reserve	d)						OCI	LPS
R/W	R/W	-	-	-	-	-	-	-	-	-	-	-	-	-	R	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	- Description
31	CRWE	 (write) ClearRemoteWakeupEnable 0b: Invalid. 1b: DeviceRemoteWakeupEnable bit is cleared to "0".
30-18	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
17	OCIC	OverCurrentIndicatorChange This bit is set to "1" when OverCurrentIdicator bit value is changed. 0b: Invalid. 1b: OverCurrentIdicator bit is cleared to "0".
16	LPSC	 (read) LocalPowerStatusChange Unsupported. The reading value always becomes "0". (write) SetGlobalPower 0b: Invalid. 1b: SetGlobalPower command is issued.
15	DRWE	 (read) DeviceRemoteWakeupEnable This bit enables a ConnectStatusChange bit as a RemoteWakeup event. 0b: Disable 1b: Enable (write) SetRemoteWakeupEnable 0b: Invalid. 1b: SetRemoteWakeupEnable bit is set to "1".
14-2	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
1	OCI	OverCurrentIndicator This bit reflects the App_prt_ovrcur bit value of CCNT module's USB set register (CUSB). When NoOverCurrentProtection bit and OverCurrentProtectionMode bit of the HcRhDescriptorA register are "0", this field becomes valid. 0b: Over-current condition is not detected. (App_prt_ovrcur = 0) 1b: Over-current condition is detected. (App_prt_ovrcur = 1)
0	LPS	 (read) LocalPowerStatus Unsupported. The reading value always becomes "0". (write) ClearGlobalPower 0b: Invalid. 1b: ClearGlobalPower command to the port is issued.

23.6.3.22. HcRhPortStatus[1] (Root Hub Port Status/Control Register 1)

This register is used for the control and the event notification of each port. HcRhPortStatus[1] is for Port1.

The lower 16bit is used to reflect the port status, whereas the upper 16bit reflects the Status Change bits. Some status bits are implemented with special write behavior. Refer to the description of each bit for details.

If a transaction is in progress when rewriting port status, the resulting port status change must be postponed until the transaction completes.

Address		FFF8_1054 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					(1	Reserve	ed)					PRSC	OCIC	PSSC	PESC	CSC
R/W	-	-	-	-	-	-	-	-	-	-	-	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			(Rese	erved)			LSDA	PPS	(F	Reserve	d)	PRS	POCI	PSS	PES	CCS
R/W	-	-	-	-	-	-	R/W	R/W	-	-	-	R/W	R/W	R	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-21	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
20	PRSC	PortResetStatusChange This bit indicates the end of the port reset signal. (read) 0b: Port reset is not completed. 1b: Port reset is completed.
		(write) 0b: Invalid. 1b: This bit is cleared to "0".
19	OCIC	PortOverCurrentIndicatorChange When PortOverCurrentIndicator bit is changed, this bit is set to "1". (read) 0b: No change in PortOverCurrentIndicator. 1b: PortOverCurrentIndicator has changed. (write) 0b: Invalid. 1b: This bit is cleared to "0".
18	PSSC	PortSuspendStatusChange This bit indicates completion of the resume processing to the port. When ResetStatusChange bit is set to "1", this bit is cleared to "0". (read) 0b: Resume is not completed. 1b: Resume is completed. (write) 0b: Invalid. 1b: This bit is cleared to "0".

FUJITSU

	Bit field	Description
No.	Name	Description
17	PESC	PortEnableStatusChange When PortEnableStatus bit is changed, this bit is set to "1". If PortEnableStatus bit is changed by software, this bit is not set. (read) 0b: No change in PortEnableStatus. 1b: Change in PortEnableStatus. (write) 0b: Invalid. 1b: This bit is cleared to "0".
16	CSC	ConnectStatusChange When the event of connection or disconnection is generated, this bit is set to "1". (read) 0b: No change in ConnectStatusChange 1b: Change in ConnectStatusChange (write) 0b: Invalid. 1b: This bit is cleared to "0".
15-10	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
9	LSDA	 (read) LowSpeedDeviceAttached This bit indicates the speed of the device attached to the port. This bit is valid only if the CurrentConnectStatus bit is "0". 0b: Full Speed device is attached. 1b: Low Speed device is attached. (write) ClearPortPower 0b: Invalid. 1b: PortPowerStatus bit is cleared to "0".
8	PPS	 (read) PortPowerStatus This bit indicates the port's power status, regardless of the power switching mode. When the over-current status (PortOverCurrentIndicator=1) is detected, this bit is cleared to "0". 0b: Port power is off. 1b: Port power is on. (Note) When NoPowerSwitching bit is set, the reading value of this bit is always "1". (write) SetPortPower Ob: Invalid. 1b: PortPowerStatus bit is set to "1".
7-5	(Reserved)	Reserved field. Be sure to write "0" to these bits. The reading value always becomes "0".
4	PRS	 (read) PortResetStatus When reset is completed, this bit is cleared to "0". When CurrentConnectStatus is "0", this bit is not set. 0b: Port reset signal is not active. 1b: Port reset signal is active. (write) SetPortReset 0b: Invalid. 1b: PortResetStatus bit is set to "1".

FUJITSU

	Bit field	Description
No.	Name	Description
3	POCI	<pre>(read) PortOverCurrentIndicator This bit reports over-current condition per port. This bit reflects the App_prt_ovrcur bit value of the CCNT module's USB set register (CUSB). When NoOverCurrentProtection bit of the HcRhDescriptorA register is "0" and OverCurrentProtectionMode bit of the HcRhDescriptorA register is "1", this field becomes valid. 0b: No over-current condition. (App_prt_ovrcur = 0) 1b: Over-current condition is detected. (App_prt_ovrcur = 1) (write) ClearSuspendStatus 0b: Invalid. 1b: Resume processing is executed to the port.</pre>
2	PSS	 (read) PortSuspendStatus This bit is not able to be set, if CurrentConnectStatus bit is "0". This bit is cleared to "0", when the port reset is completed or when the Host Controller is placed in the USBRESUME state. 0b: Port is not suspended. 1b: Port is suspended. (write) SetPortSuspend If CurrentConnectStatus bit is "0", PortSuspendStatus bit cannot be set by writing in this bit; instead it sets ConnectStatusChange bit. 0b: Invalid. 1b: PortSuspendStatus bit is set to"1".
1	PES	 (read) PortEnableStatus This bit is not able to be set, if CurrentConnectStatus bit is "0". This bit is set to "1", when the port reset or the port suspend is completed. 0b: Port is disabled. 1b: Port is enabled. (write) SetPortEnable If CurrentConnectStatus bit is "0", PortEnableStatus bit cannot be set by writing in this bit; instead it sets ConnectStatusChange bit. 0b: Invalid. 1b: PortEnableStatus bit is set to "1".
0	CCS	 (read) CurrentConnectStatus 0b: Device is not connected to this port at this time. 1b: Device is connected to this port at this time. (Note) When DeviceRemovable bit of HcRhDescriptorB register is "1", this bit always becomes "1". (write) ClearPortEnable 0b: Invalid. 1b: PortEnableStatus bit is cleared to "0".

23.6.4. Other Registers

23.6.4.1.	LinkModeSetting (Link Mode Setting Register)
-----------	--

Address	-	FFF8_2000 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		LN	ЛА			LN	/IB		LN	ЛС			LN	ЛD		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	LME						LMF	LMG			LN	ЛН			LI	MI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-28	LMA	This field is fixed to "0000b". Do not change the value of this field.
27-24	LMB	This field is fixed to "0000b". Do not change the value of this field.
23-22	LMC	This field is fixed to "01b". Do not change the value of this field.
21-16	LMD	This field is fixed to " $20_{\rm H}$ ". Do not change the value of this field.
15-10	LME	This field is fixed to " $20_{\rm H}$ ". Do not change the value of this field.
9	LMF	This field is fixed to "0". Do not change the value of this field.
8	LMG	This field is fixed to "1". Do not change the value of this field.
7-2	LMH	This field is fixed to " $00_{\rm H}$ ". Do not change the value of this field.
1-0	LMI	This field is fixed to "00b". Do not change the value of this field.

Address		FFF8_2004 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Rese	erved)		PM1A	A1A PM1B PM1C PM1D (Reserved)							PM	11E		
R/W	R	R	R	R	R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	1	1	0	0	0	0	1	1	0	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		PN	11F			PM	1G			PM	[1H			PM1J		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	1	0	0	0	1	1	0	0	0	0	0	1	1	0	1	1
¥1. DDDM																

23.6.4.2. PHYModeSetting1 (PHY Mode Setting 1 Register)

*1: RPDMEN

*2: RPDPEN

	Bit field	Description
No.	Name	Description
31-28	(Reserved)	Reserved field.
27	PM1A	This field is fixed to "0". Do not change the value of this field.
26	PM1B	This field is fixed to "0". Do not change the value of this field.
25	PM1C	This field is fixed to "1". Do not change the value of this field.
24	PM1D	This field is fixed to "1". Do not change the value of this field.
23-22	(Reserved)	Reserved field.
21-16	PM1E	This field is fixed to " $0D_{H}$ ". Do not change the value of this field.
15-12	PM1F	This field is fixed to "1000b". Do not change the value of this field.
11-8	PM1G	This field is fixed to "1100b". Do not change the value of this field.
7-4	PM1H	This field is fixed to "0001b". Do not change the value of this field.
3-1	PM1I	This field is fixed to "101b". Do not change the value of this field.
0	PM1J	This field is fixed to "1". Do not change the value of this field.

23.6.4.3. PHYModeSetting2 (PHY Mode Setting 2 Register)

Address		FFF8_2008 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)												PM	[2A	
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	*1				PM2B					(F	Reserve	d)			PM2C	
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*1: (Reserved)

	Bit field	Description
No.	Name	Description
31-18	(Reserved)	Reserved field.
17-16	PM2A	This field is fixed to "11b". Do not change the value of this field.
15	(Reserved)	Reserved field.
14-8	PM2B	This field is fixed to " $00_{\rm H}$ ". Do not change the value of this field.
7-3	(Reserved)	Reserved field.
2-0	PM2C	This field is fixed to "000b". Do not change the value of this field.

24. USB function controller

This chapter describes function and operation of USB function controller. Version of this chapter is managed unity with the one of LSI product specifications.

24.1. Outline

The function controller, compliant with "high speed/full speed" of the USB standard edition 2.0 equips PHY with 1 port.

24.2. Feature

• USB 2.0 HS/FS protocol handling Basic USB communication protocol is processed to reduce load on the application (software) side.

Notes:

Following items should be handled on the application side.(*)

- 1- Class/Vendor request processes
- 2- SET_DESCRIPTOR/GET_DESCRIPTOR/SYNCH_FRAME processes of the standard request
- (*): This command is handled as transfer to endpoint 0. After reading and analyzing command data from FIFO, the system should be ready for required data transfer at data stage.
- Built-in exclusive DMAC (corresponding to EP1 and EP2)
- FIFO for endpoint

T	ome composition					
Endpoint	Туре	In/Out	Buffer size	Access method		
EPO	Control	Out	64 Bytes × 1	CPU		
LIU	Control	In	64 Bytes × 1			
EP1	Bulk	In/Out	512 Bytes $\times 2$	CPU or DMAC		
EP2	Bulk	In/Out	512 Bytes × 2	CI U UI DIMAC		
EP3	Interrupt	In	64 Bytes × 1	CPU		

Table 24-1 Endpoint composition

24.3. Block diagram

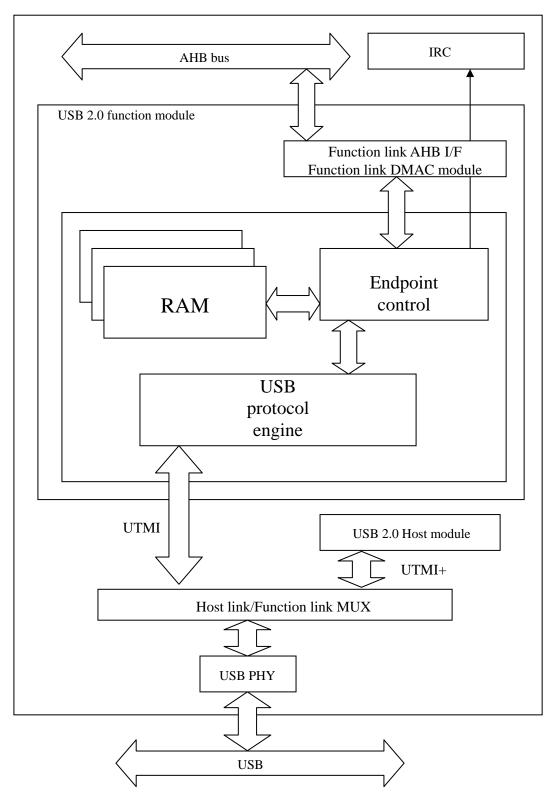


Figure 24-1 Block diagram of USB function controller

24.4. Supply clock

AHB clock is supplied to USB function controller. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

24.5. Register

24.5.1. Register list

Address	Register	Description
$FFF7_{0000_{H}}$	UFCpAC	Access method control from CPU
$FFF7_0004_H$	UFDvC	USB control
$FFF7_0008_{H}$	UFDvS	USB status display
$FFF7_000C_H$	UFEpIC	Interrupt control per each endpoint
$FFF7_0010_H$	UFEpIS	Interrupt status display per each endpoint
$FFF7_0014_H$	UFEpDC	DMA transfer control of endpoint
$FFF7_0018_{H}$	UFEpDS	DMA transfer status display of endpoint
$FFF7_001C_H$	UFTSTAMP	Time stamp register
$FFF7_0020_H$	UFEpTCSel	Selection register of transfer count
$FFF7_0024_H$	UFEpTC1	Byte count register for endpoint1
$FFF7_0028_H$	UFEpTC2	Byte count register for endpoint2
$FFF7_0070_H$	UFEpRS0	Data reception amount display of endpoint0
$FFF7_0078_H$	UFEpRS1	Data reception amount display of endpoint1
$FFF7_0080_H$	UFEpRS2	Data reception amount display of endpoint2
$FFF7_0088_{H}$	UFEpRS3	Data reception amount display of endpoint3
$FFF7_00F0_H$	UFCusCnt	Operation setting register
$FFF7_00F4_H$	UFCALB	Timeout adjustment register
$FFF7_00F8_H$	UFEpLpBk	Loop back test register
$FFF7_00FC_H$	UFIntfAltNum	Register for setting number of Alternate in use
		Unsupported
$FFF7_0100_H$	UFEpC0	Control register for endpoint0
$FFF7_0104_H$	UFEpS0	Status register for endpoint0
$FFF7_0108_H$	UFEpC1	Control register for endpoint1
$FFF7_010C_H$	UFEpS1	Status register for endpoint1
$FFF7_0110_H$	UFEpC2	Control register for endpoint2
$FFF7_0114_H$	UFEpS2	Status register for endpoint2
$FFF7_0118_H$	UFEpC3	Control register for endpoint3
FFF7_011C _H	UFEpS3	Status register for endpoint3
$FFF7_0180_H$	UFEpIB0	IN transmission buffer of endpoint0
FFF7_0184 _H	UFEpIB1	IN transmission buffer of endpoint1

Address	Register	Description
$FFF7_0188_H$	UFEpIB2	IN transmission buffer of endpoint2
FFF7_018C _H	UFEpIB3	IN transmission buffer of endpoint3
FFF7_01C0 _H	UFEpOB0	OUT transmission buffer of endpoint0
FFF7_01C4 _H	UFEpOB1	OUT transmission buffer of endpoint1
FFF7_01C8 _H	UFEpOB2	OUT transmission buffer of endpoint2
FFF7_0200 _H	UFConfig	Make-up area of USB function
$FFF7_0213_H$		
$FFF7_0404_H$	UFEpDC1	Control/Status register of DMA channel for endpoint1
FFF7_0408 _H	UFEpDC2	Control/Status register of DMA channel for endpoint2
FFF7_0414 _H	UFEpDA1	Start address register of DMA channel for endpoint1
FFF7_0418 _H	UFEpDA2	Start address register of DMA channel for endpoint2
FFF7_0424 _H	UFEpDS1	Data size register of DMA channel for endpoint1
FFF7_0428 _H	UFEpDS2	Data size register of DMA channel for endpoint2

24.5.2. USB Function CPU Access Control Register (UFCpAC)

Address		FFF7_0000 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved) CFV													CFWE	
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Rese	erved)						SR	BO	CE	BW
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

	Bit field	Description
No.	Name	Description
31-17	(Reserved)	Reserved field.
16	CFWE	Write access to make-up area is controlled. 0: Writing to the area is invalidated 1: Writing to the area is validated
15-4	(Reserved)	Reserved field.
3	SR	When 1 is written to this field, software reset of USB function unit is performed and the value of this field returns to 0 after the reset.0: Software reset is not performed0: Software reset is performed
2	ВО	Byte ordering is specified when CPU and DMAC access to the register. 0: Little endian 1: Big endian
1-0	CBW	Keep this field value as initial value.

24.5.3. USB Function Device Control Register (UFDvC)

Address		FFF7_0004 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										(Rese	erved)					
R/W	R/WR	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R/W	R/W	R/W	R
Initial value	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Rese	erved)									
R/W	R	R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0

	Bit field	Description
No.	Name	Description
31	MskErraticErr	Mask bit of ErraticErr interrupt.
		0 _H ErraticErr interrupt is not masked
		0 _H ErraticErr interrupt is not masked 1 _H ErraticErr interrupt is masked
30	MskSetConf	Mask bit of SetConfigure interrupt.
		0 _H SetConfigure interrupt is not masked
		1 _H SetConfigure interrupt is masked
29	MskUsbRstb	Mask bit of USB reset start interrupt.
		0 _H USB reset start interrupt is not masked
		1 _H USB reset start interrupt is masked
28	MskUsbRste	Mask bit of USB reset end interrupt.
		0 _H USB reset end interrupt is not masked
		1 _H USB reset end interrupt is masked
27	MskSetup	Mask bit of setup interrupt.
		0 _H Setup interrupt is not masked
		1 _H Setup interrupt is masked
26	MskSof	Mask bit of SOF interrupt.
		0 _H SOF interrupt is not masked
		1 _H SOF interrupt is masked
25	MskSuspendb	Mask bit of suspend start interrupt.
		0 _H Suspend start interrupt is not masked
		1 _H Suspend start interrupt is masked
24	MskSuspende	Mask bit of suspend end interrupt.
		0 _H Suspend end interrupt is not masked
		1 _H Suspend end interrupt is masked
23-20	(Reserved)	Reserved field.
19	L_MODE	This is for test. Set the value to $0_{\rm H}$.
18	P_MODE	This is for test. Set the value to $0_{\rm H}$.

1	Bit field	Description
No.	Name	Description
17	LpBkPHY	Setting PHY to loopback test mode is specified. Normally, set the value to 0_H . 0_H PHY performs in normal operation 1_H PHY shifts to loopback test mode
16-15	(Reserved)	Reserved field.
10 15	PhySusp	Setting PHY forcibly to suspend mode is specified.
		$0_{\rm H}$ PHY performs in normal operation $1_{\rm H}$ PHY shifts to suspend mode
13-6	(Reserved)	Reserved field.
5	DisConnect	Whether to output "non-driving" state to PHY is specified. 0_H PHY performs in normal operation 1_H "Non-driving" state is output
4	SelfPower	Power supply of the device is set. 0_H Power supply is bus power 1_H Power supply is self power
3	EnRmtWkUp	Remote wake-up function is controlled. 0 _H Remote wake-up function is disabled (in this case, resume function is disabled) 1 _H Remote wake-up function is enabled
2	ReqResume	$0_{\rm H}$ Resume request is not output $1_{\rm H}$ Resume request is output $1_{\rm H}$ Resume request is output Field value is automatically returned to $0_{\rm H}$ This setting is valid only when EnRmtWkUp field value is $1_{\rm H}$
1-0	ReqSpeed	PHY type is specified for connection. 0 _H Connection in HighSpeed is requested When host or hub of connection destination corresponds to HighSpeed mode, HighSpeed mode is applied for the connection; if not, FullSpeed mode is applied. 1 _H Connection in FullSpeed is requested Although host or hub of connection destination corresponds to HighSpeed mode, FullSpeed mode is applied for the connection When this is set, Device Chirp is not output during USB reset 2 _H , 3 _H Do not set this register in this LSI

24.5.4. USB Function Device Status Register (UFDvS)

Address								FFF7_	0008 _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										Co	onf		(Rese	erved)	CrtS	peed
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved)											(Rese	erved)			
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31	IntErraticErr	Whether PHY is hung up is indicated.When the value of this field becomes $1_{\rm H}$ and this is not masked, ErraticErr interrupt occurs. $0_{\rm H}$ PHY is not hung up
		1 _H PHY is hung up This field is cleared by writing 0 _H ; however, hardware reset or software reset is required to return PHY to normal state
30	IntSetConf	Whether Configuration value is set by SetConfiguration is indicated. When the value of this field becomes $1_{\rm H}$ and this is not masked, SetConfigure interrupt occurs (even though Configuration value is the same as before, the value of this field also becomes $1_{\rm H}$.)
		0 _H SetConfiguration is not performed 1 _H SetConfiguration is performed This field is cleared by writing 0 _H
29	IntUsbRstb	Whether to detect USB reset start is indicated. When the value of this field becomes 1_H and this is not masked, USB reset start interrupt occurs. 0_H USB reset start is not detected 1_H USB reset start is detected 1_H USB reset start is detected This field is cleared by writing 0_H
28	IntUsbRste	Whether to detect USB reset end is indicated. When the value of this field becomes $1_{\rm H}$ and this is not masked, USB reset end interrupt occurs.
		$ \begin{array}{ c c c } \hline 0_{H} & USB \text{ reset end is not detected} \\ \hline 1_{H} & USB \text{ reset end is detected} \\ \hline \text{This field is cleared by writing } 0_{H} \end{array} $
27	IntSetup	Whether to detect Setup stage start is indicated. When the value of this field becomes $1_{\rm H}$ and this is not masked, Setup interrupt occurs.
		$\begin{array}{ c c c }\hline 0_{H} & Setup stage start is not detected \\\hline 1_{H} & Setup stage start is detected \\\hline This field is cleared by writing 0_{H}$
26	IntSof	Whether to detect SOF reception is indicated. When the value of this field becomes $1_{\rm H}$ and this is not masked, SOF interrupt occurs.
		$\begin{array}{c c} 0_{\rm H} & {\rm SOF\ reception\ is\ not\ detected} \\ 1_{\rm H} & {\rm SOF\ reception\ is\ detected} \\ & {\rm This\ field\ is\ cleared\ by\ writing\ 0_{\rm H}} \end{array}$

FUJITSU

	Bit field	Duratitie
No.	Name	Description
25	IntSuspendb	Whether to detect suspend state is indicated. When the value of this field becomes $1_{\rm H}$ and this is not masked, suspend start interrupt occurs.
		0 _H Suspend state is not detected
		$1_{\rm H}$ Suspend state is detected
		This field is cleared by writing 0 _H
24	IntSuspende	Whether to detect completion of suspend state is indicated. When the value of this field becomes $1_{\rm H}$ and this is not masked, suspend end interrupt occurs.
		0 _H Completion of suspend state is not detected
		1 _H Completion of suspend state is detected
		This field is cleared by writing 0 _H
23-20	Conf	Current Configuration value is indicated.
19-18	(Reserved)	Reserved field.
17-16	CrtSpeed	USB connection speed is indicated.
		0 _H It is connected in HighSpeed mode
		1 _H It is connected in FullSpeed mode
		2 _H , 3 _H Reserved
15	PhyReset	This is status bit indicating interface between PYH - LINK.
		0 _H Interface reset between PHY – LINK is released and the operation starts
		$1_{\rm H}$ Interface between PHY – LINK is in reset and operation of entire
		USB function unit is not started
14-10	(Reserved)	Reserved field.
9	BusReset	This is status bit indicating USB reset operation status.
		0 _H USB is not reset
		1 _H USB is reset
8	Suspend	This is status bit indicating whether device is in suspended.
		0 _H Device is not in suspend state
		1 _H Device is in suspend state
7-0	(Reserved)	Reserved field.

24.5.5. USB Function Endpoint Interrupt Control Register (UFEpIC)

Address		FFF7_000C _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Rese	erved)									
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

	Bit field	Description
No.	Name	Description
31-4	(Reserved)	Reserved field.
3	MskEp3	This is mask bit to the interrupt notified from endpoint3. $0_{\rm H}$ The interrupt notified from endpoint3 is not masked
		$1_{\rm H}$ The interrupt notified from endpoint3 is masked
2	MskEp2	This is mask bit to the interrupt notified from endpoint2. $0_{\rm H}$ The interrupt notified from endpoint2 is not masked $1_{\rm H}$ The interrupt notified from endpoint2 is masked
1	MskEp1	This is mask bit to the interrupt notified from endpoint1. $0_{\rm H}$ The interrupt notified from endpoint1 is not masked $1_{\rm H}$ The interrupt notified from endpoint1 is masked
0	MskEp0	This is mask bit to the interrupt notified from endpoint0. $0_{\rm H}$ The interrupt notified from endpoint0 is not masked $1_{\rm H}$ The interrupt notified from endpoint0 is masked

24.5.6. USB Function Endpoint Interrupt Status Register (UFEpIS)

Address		FFF7_0010 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Rese	erved)									
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-4	(Reserved)	Reserved field.
3	IntEp3	Whether notifying interrupt from endpoint3 is indicated. 0 _H Interrupt is not notified from endpoint3
		$1_{\rm H}$ Interrupt is notified from endpoint3
2	IntEp2	Whether notifying interrupt from endpoint2 is indicated. 0_H Interrupt is not notified from endpoint2 1_H Interrupt is notified from endpoint2
1	IntEp1	Whether notifying interrupt from endpoint1 is indicated. 0_H Interrupt is not notified from endpoint1 1_H Interrupt is notified from endpoint1
0	IntEp0	Whether notifying interrupt from endpoint0 is indicated. $0_{\rm H}$ Interrupt is not notified from endpoint0 $1_{\rm H}$ Interrupt is notified from endpoint0

24.5.7. USB Function Endpoint DMA Control Register (UFEpDC)

Address		FFF7_0014 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(F	Reserve	d)								
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0

	Bit field	Description
No.	Name	Description
31-19	(Reserved)	Reserved field.
18	DmaMode2	Utilization of DMA transfer at endpoint2 is indicated.
		0 _H DMA transfer is not used at endpoint2
		$1_{\rm H}$ DMA transfer is used at endpoint2
17	DmaMode1	Utilization of DMA transfer at endpoint1 is indicated.
		0 _H DMA transfer is not used at endpoint1
		1 _H DMA transfer is used at endpoint1
16-3	(Reserved)	Reserved field.
2	MskDmaReq2	Whether to mask DMA transfer request from endpoint2 is specified.
		0 _H DMA transfer request from endpoint2 is not masked
		1 _H DMA transfer request from endpoint2 is masked
1	MskDmaReq1	Whether to mask DMA transfer request from endpoint1 is specified.
		0 _H DMA transfer request from endpoint1 is not masked
		1 _H DMA transfer request from endpoint1 is masked
0	(Reserved)	Reserved field.

24.5.8. USB Function Endpoint DMA Status Register (UFEpDS)

Address		FFF7_0018 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(F	Reserve	d)								
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-3	(Reserved)	Reserved field.
2	DmaReq2	DMA transfer request from endpoint2 is indicated. 0 _H DMA transfer is not requested from endpoint2
		$1_{\rm H}$ DMA transfer is requested from endpoint2
1	DmaReq1	DMA transfer request from endpoint1 is indicated. 0_H DMA transfer is not requested from endpoint1 1_H DMA transfer is requested from endpoint1
0	(Reserved)	Reserved field.

24.5.9. USB Function Time Stamp Register (UFTSTAMP)

Address								FFF7_	001C _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		(F	Reserve	d)						Т	imStan	ip				
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description						
No.	Name	Description						
31-11	(Reserved)	Reserved field.						
10-0 TimStamp		Frame number at SOF reception is indicated.						

			-													
Address								FFF7	_0020 _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(F	Reserve	d)								
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

24.5.10. UFEpTCSel Register

	Bit field	Description
No.	Name	Description
31-3	(Reserved)	Reserved field.
2	TCSelUSB2	Total transfer count value (CPU side or USB side) is specified at reading EpTC2 register. $0_{\rm H}$ Total transfer count value on CPU side is read from the EpTC2 register $1_{\rm H}$ Total transfer count value on USB side is read from the EpTC2 register
1	TCSelUSB1	Total transfer count value (CPU side or USB side) is specified at reading EpTC1 register. $0_{\rm H}$ Total transfer count value on CPU side is read from the EpTC1 register $1_{\rm H}$ Total transfer count value on USB side is read from the EpTC1 register
0	(Reserved)	Reserved field.

24.5.11. USB Function Endpoint1 Terminal Count Register (UFEpTC1)

Address								FFF7	_0024 _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								TCI	NT1							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								TCI	NT1							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

	B	lit field	Description
No	D.	Name	Description
31-	-0		Number of byte of DMA transfer performed at endpoint1 is set. When number of byte of DMA transfer over multiple packets reaches to the value specified in TCNT1, IntDEnd is set to notify interrupt and MskDmaReq1 is set to stop DMA transfer. Setting $00000000_{\rm H}$ to TCNT1 is prohibited.

24.5.12. USB Function Endpoint2 Terminal Count Register (UFEpTC2)

Address		FFF7_0028 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								TCI	NT2							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								TCI	NT2							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

	Bit field	Description
No.	Name	Description
31-0		Number of byte of DMA transfer performed at endpoint2 is set. When number of byte of DMA transfer over multiple packets reaches to the value specified in TCNT2, IntDEnd is set to notify interrupt and MskDmaReq2 is set to stop DMA transfer. Setting $00000000_{\rm H}$ to TCNT2 is prohibited.

24.5.13. USB Function Endpoint0 Rx Size Register (UFEpRS0)

Address		FFF7_0070 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					Size0i								Size0o			
R/W	R/W	R	R	R	R	R	R	R	R/W	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-16	(Reserved)	Reserved field
15	SelTx0i	Function of Size0i bit is selected. 0 _H : RxSize0i 1 _H : TxSize0i
14-8		Number of transmission data byte written in EndPoint0i is displayed. It is valid until $1_{\rm H}$ is written in Ready0i. Or, number of read data byte in process from EndPoint0i is displayed for sending protocol engine. This becomes invalid after reading and transmission.
7	SelTx0o	Function o Size0o bit is selected. 0 _H : RxSize0o 1 _H : TxSize0o
6-0	Size0o	Number of reception data byte written in/read from EndPoint0o is displayed. Valid data volume is displayed when IntReady0o is set.

24.5.14.	USB Function Endpoint1	Rx Size Register (UFEpRS1)
----------	------------------------	----------------------------

Address		FFF7_0078 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved) Size1															
R/W	R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-16	(Reserved)	Reserved field
15	SelTx1	Function of Size1 bit is selected. 0 _H : RxSize1 1 _H : TxSize1
14-11	(Reserved)	Reserved field
10-0	Size1	Setting to OUT transfer buffer with RxSize1 (SelTx1 = 0H): Number of reception data byte written in EndPoint1 is displayed. Valid data volume is displayed when IntReady1 is set. Setting to IN transfer buffer with RxSize1 (SelTx1 = 0H): Number of transmission data byte written in EndPoint1 is displayed. Valid data volume is displayed until 1_H is written in Ready1i. Setting to OUT transfer buffer with TxSize1 (SelTx1 = 1H): Number of reception data byte read from EndPoint1 is displayed. Valid data volume is displayed when IntReady1 is set.

24.5.15. USB Function Endpoint2 Rx Size Register (UFEpRS2)

Address		FFF7_0080 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			(Rese	erved)							Size2					
R/W	R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-16	(Reserved)	Reserved field
15	SelTx2	Function of Size2 bit is selected. 0 _H : RxSize2 1 _H : TxSize2
14-11	(Reserved)	Reserved field
10-0	Size2	Setting to OUT transfer buffer with RxSize2 (SelTx2 = 0H): Number of reception data byte written in EndPoint2 is displayed. Valid data volume is displayed when IntReady2 is set. Setting to IN transfer buffer with RxSize2 (SelTx2 = 0H): Number of transmission data byte written in EndPoint2 is displayed. Valid data volume is displayed until 1_H is written in Ready2i. Setting to OUT transfer buffer with TxSize2 (SelTx1 = 1H): Number of reception data byte read from EndPoint2 is displayed. Valid data volume is displayed when IntReady2 is set.

24.5.16. USB Function Endpoint3 Rx Size Register (UFEpRS3)

Address		FFF7_0088 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			(Rese	erved)							Size3					
R/W	R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-16	(Reserved)	Reserved field
15	SelTx3	Function of Size3 bit is selected. 0 _H : RxSize3 1 _H : TxSize3
14-11	(Reserved)	Reserved field
10-0	Size3	Setting to OUT transfer buffer with RxSize3 (SelTx3 = 0_{H}): Number of reception data byte written in EndPoint3 is displayed. Valid data volume is displayed when IntReady3 is set. Setting to IN transfer buffer with RxSize3 (SelTx3 = 0_{H}): Number of transmission data byte written in EndPoint3 is displayed. Valid data volume is displayed until 1_{H} is written in Ready3i. Setting to OUT transfer buffer with TxSize3 (SelTx3 = 1_{H}): Number of reception data byte read from EndPoint3 is displayed. Valid data volume is displayed when IntReady3 is set.

24.5.17. UFCusCnt Register

Address								FFF7_	00F0 _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				Т	add[6:0)]			(Rese	rved)						
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W	R	R	R	R	R	R	R	R/W	R	R	R	R	R	R/W	R/W	R/W
Initial value	0	1	0	1	1	1	1	0	0	0	1	1	0	0	0	0

Writing other values than initial value to bit 15, 14, $12 \sim 9$, $7 \sim 3$ is not guaranteed.

	Bit field	Description							
No.	Name	Description							
31	(Reserved)	Reserved field.							
30-24	Tadd[6:0]	Leave this value as default.							
23-22	(Reserved)	Reserved field.							
21	TESTSe0Nack	Leave this value as default.							
20	TESTK	Leave this value as default.							
19	TESTJ	Leave this value as default.							
18	TESTP	Leave this value as default.							
17	SetConfig	eave this value as default.							
16	SetAdd	eave this value as default.							
15-9	(Reserved)	Reserved field.							
8	EnIniFifo	The function of IniFifo0o.IniFifo0i of the UFEpC0 register and IniFifo1/2/3 of the UFEpC1/2/3 register is validated.							
		0 _H Invalid							
		1 _H Valid							
3-7	(Reserved)	Reserved field.							
2-1	(Reserved)	Reserved field. Write "0" to these bits. Note: Do not write "1".							
0	ExtRPU	Whether to use pull-up resistance of built-in LSI is set.							
		$\begin{array}{c c} 0_{\rm H} & \text{Used} \\ \hline 1_{\rm H} & \text{Not used} \end{array}$							

Address		FFF7_00F4 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(F	Reserve	d)				Н	SCALI	В		F	SCALI	В
R/W	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1

	Bit field	Description
No.	Name	Description
31-7	(Reserved)	Reserved field.
6-4	HSCALIB	Timeout adjustment bit of HS protocol that is to adjust this macro's response time (until timeout occurs) from host in 33.333ns per unit. 000: 736 bit time Initial value 010: 768 bit time Normally, this register does not need setting.
3	(Reserved)	Reserved field.
2-0	FSCALIB	Timeout adjustment bit of FS protocol that is to adjust this macro's response time (until timeout occurs) from host in 33.333ns per unit. 000: 16 bit time Initial value 011: 17.2 bit time Normally, this register does not need setting.

24.5.19. UFEpLpBk Register

Address								FFF7	00E8							
Audress	FFF7_00F8 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)															
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved) EpLpBkO0 EpLpBkI0															
R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description									
No.	Name	Description									
31-7	(Reserved)	Reserved field.									
7-4	EpLpBkO0	Endpoint on LoopBack0 OUT is set.									
		0000 _H	LoopBack is not tested.								
		0001H	EndPoint1 setting (valid when it is set to Makeup area as Endpoint OUT)								
		0010H	EndPoint2 setting (valid when it is set to Makeup area as Endpoint OUT)								
		0011 _H -1111 _H	Setting prohibited								
3-0	EpLpBkI0	EndPoint on Loop	Back0 IN is set.								
		0000 _H	LoopBack is not tested.								
		0001 _H	EndPoint1 setting (valid when it is set to Makeup area as Endpoint IN)								
		0010 _H	EndPoint2 setting (valid when it is set to Makeup area as Endpoint IN)								
		0011 _H	EndPoint3 setting								
		0100 _H -1111 _H Setting prohibited									

-						-										
Address	FFF7_00FC _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)]	NumIntf					
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	NumAltIntf3				NumAltIntf2				NumAltIntf1				NumAltIntf0			
R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

24.5.20. UFIntfAltNum Register

This LSI does not support this register.

	Bit field	Description							
No.	Name	Description							
31-19	(Reserved)	Reserved field.							
18-16	NumIntf	Leave this value as default.							
15	(Reserved)	Reserved field.							
24-12	NumAltIntf3	Leave this value as default.							
11	(Reserved)	Reserved field.							
10-8	NumAltIntf2	Leave this value as default.							
7	(Reserved)	Reserved field.							
6-4	NumAltIntf1	Leave this value as default.							
3	(Reserved)	Reserved field.							
2-0	NumAltIntf0	Leave this value as default.							

24.5.21. USB Function Endpoint0 Control Register (UFEpC0)

Address		FFF7_0100 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				(Rese	erved)						(Reserved)					
R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	1	1	1	0	0	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					(Rese	erved)					(Rese	erved)				
R/W	R/W	R/W	R	R	R	R	R	R	R/W	R	R	R	R	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-24	(Reserved)	Reserved field
23	MskClStall	This is mask bit to IntClStall interrupt.
		0 _H IntClStall interrupt is not masked
		1 _H IntClStall interrupt is masked
22	MskNack	This is mask bit to IntNack interrupt.
		0 _H IntNack interrupt is not masked
		1 _H IntNack interrupt is masked
21	MskStalled	This is mask bit to IntStalled interrupt.
		0 _H IntStalled interrupt is not masked
		1 _H IntStalled interrupt is masked
20-19	(Reserved)	Reserved field
18	MskPing0o	This is mask bit to IntPing00 interrupt.
		0 _H IntPing0o interrupt is not masked
		1 _H IntPing0o interrupt is masked
17	MskReady00	This is mask bit to IntReady00 interrupt.
		0 _H IntReady0o interrupt is not masked
		1 _H IntReady0o interrupt is masked
16	MskReady0i	This is mask bit to IntReady0i interrupt.
		0 _H IntReady0i interrupt is not masked
		1 _H IntReady0i interrupt is masked
15	IniFifo0o	When the value of EnIniFifo field of CustomCnt register is 1 _H , this register becomes valid. Moreover, FIFO surroundings of endpoint0o are initialized.
		0 _H Initialization is not performed
		$1_{\rm H}$ Initialization of OUT transfer FIFO at endpoint0 is performed
		IntReady0o field and Ready0o field of UFEpS0 register, and Size0o field of UFEpRS0 register are also initialized
		The value of this field automatically returns to $0_{\rm H}$

	Bit field	Description
No.	Name	Description
14	IniFifo0i	This becomes valid when EnIniFifo field of CustomCnt register is $1_{\rm H}$. Moreover, FIFOsurroundings of endpoint0o are initialized. $0_{\rm H}$ Initialization is not performed.
		1 _H Initialization of IN transfer FIFO at endpoint0 is performed. IntReady0i field and Ready0i field of UFEpS0 register, and Size0i field of UFEpRS0 register are also initialized. The value of this field automatically returns to 0 _H .
13-8	(Reserved)	Reserved field
7	TestMode0	Loopback test mode of endpoint0 is set. 0 _H Endpoint0 performs normal operation.
		1 _H Endpoint0 shifts to the loopback test mode which is from IN to OUT transfer buffer.
6-3	(Reserved)	Reserved field
2	ReqStall	Stall response from endpoint0 to host is specified. 0 _H Stall response is not performed. 1 _H Stall response is performed.
1	Init0o	Initialization of OUT transfer buffer at endpoint0 is instructed. 0_H Buffer is not initialized. 1_H Buffer is initialized The value of this field is automatically returned to 0_{H_c}
0	Init0i	Initialization of IN transfer buffer at endpoint0 is instructed. 0_H Buffer is not initialized. 1_H Buffer is initialized The value of this field is automatically returned to $0_{H.}$

24.5.22. USB Function Endpoint0 Status Register (UFEpS0)

Address		FFF7_0104 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)											(Rese	erved)			
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					(F	Reserve	d)								(Rese	erved)
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0

	Bit field	Description
No.	Name	Description
31-24	(Reserved)	Reserved field
23	IntClStall	IntCIStall interrupt request is indicated. When Stalled field becomes $0_{H_{,}}$ the value of this field becomes 1_{H} . This field is cleared by writing 0_{H} . 0_{H} IntClStall interrupt is not requested 1_{H} IntClStall interrupt is requested
22	IntNack	IntNack interrupt request is indicated. When Nack packet is sent without distinction of IN/OUT transfer, the value of this field becomes 1_H . The distinction should be carried out by using bmRequestType of the received data in Setup stage. This field is cleared by writing 0_H . 0_H IntNack interrupt is not requested 1_H IntNack interrupt is requested
21	IntStalled	IntStalled interrupt request is indicated. When Stalled field becomes 1_{H_i} the value of this field becomes 1_{H_i} . This field is cleared by writing 0_{H_i} . 0_H IntStalled interrupt is not requested 1_H IntStalled interrupt is requested
20-19	(Reserved)	Reserved field
18	IntPing0o	IntPing0o interrupt request is indicated. When ping is sent to endpoint0o, the value of this field becomes $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntPing0o interrupt is not requested $1_{\rm H}$ IntPing0o interrupt is requested
17	IntReady00	IntReady0o interrupt request is indicated. When data is able to be read from endpoint0o buffer, the value of this field becomes $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntReady0o interrupt is not requested $1_{\rm H}$ IntReady0o interrupt is requested
16	IntReady0i	IntReady0i interrupt request is indicated. When data is able to be read from endpoint0i buffer, the value of this field becomes $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntReady0i interrupt is not requested $1_{\rm H}$ IntReady0i interrupt is requested
15-5	(Reserved)	Reserved field

	Bit field	Description
No.	Name	Description
4	Ready0o	Whether endpoint0o buffer is busy is indicated. 0 _H Buffer is busy that data is unable to be read. 1 _H Buffer is not busy that the data in received buffer by OUT transfer is able to be read. The value of this field is cleared by writing 1 _H , and buffer is able to be received new data by OUT transfer. When new data is received and its reading is ready, the value of this field becomes 1 _H again.
3	Ready0i	Whether endpoint0i buffer is busy is indicated. 0 _H Buffer is busy that data is unable to be written. 1 _H Buffer is not busy that the data sent by IN transfer is able to be written to buffer. The value of this field is cleared by writing 1 _H ; at the same time, the data in buffer is sent to USB by IN transfer. When data is able to be written to the buffer again, the value of this field becomes 1 _H .
2	Stalled	Whether the state is Stall is indicated. 0_H State is not stall. 1_H State is stall.
1-0	(Reserved)	Reserved field.

24.5.23. USB Function Endpoint1 Control Register (UFEpC1)

Address		FFF7_0108 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)				TestAlt											
R/W	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
Initial value	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-28	(Reserved)	Reserved field
27-24	TestAlt1	This field is to directly set alternate value for testing. Writing is enabled when TestMode1 field value is $1_{\rm H}$.
23	MskClStall1	This is mask bit to IntClStall1 interrupt. 0_H IntClStall1 interrupt is not masked. 1_H IntClStall1 interrupt is masked.
22	MskNack1	0_H IntNack1 interrupt is not masked. 1_H IntNack1 interrupt is masked.
21	MskStalled1	0_H IntStalled1 interrupt is not masked. 1_H IntStalled1 interrupt is masked.
20	MskEmpty1	0_H IntEmpty1 interrupt is not masked. 1_H IntEmpty1 interrupt is masked.
19	MskDEnd1	This is mask bit to IntDEnd1 interrupt. 0_H IntDEnd1 interrupt is not masked. 1_H IntDEnd1 interrupt is masked.
18	MskAChg1	This is mask bit to IntAChg1 interrupt. 0_H IntAChg1 interrupt is not masked. 1_H IntAChg1 interrupt is masked.
17	MskPing1	This is mask bit to IntPing1 interrupt. 0_H IntPing1 interrupt is not masked. 1_H IntPing1 interrupt is masked.
16	MskReady 1	This is mask bit to IntReady1 interrupt. 0_H IntReady1 interrupt is not masked. 1_H IntReady1 interrupt is masked.

FUĴITSU

	Bit field	
No.	Name	Description
15	IniFifo1	When the value of EnIniFifo field of CustomCnt register is $1_{\rm H}$, this register becomes valid. FIFO surroundings of endpoint1 are initialized.
		0 _H Initialization is not performed 1 _H Initialization of FIFO at endpoint1 is performed. IntReady1, Ready1, Empty1, IntEmpty1 of UFEpS1 register, DmaReq1, DmaReq2 of UFEpDS register, TCNT1, TCNT2 of UFEpTC1
		register, and Size1 of UFEpRS1 register are also initialized. After writing $1_{\rm H}$, the value of this bit automatically returns to $0_{\rm H}$.
14	MskSPDD1	This is mask bit to IntSPDD interrupt.
		$0_{\rm H}$ IntSPDD interrupt is not masked. $1_{\rm H}$ IntSPDD interrupt is masked.
13	MskSPR1	This is mask bit to IntSPR interrupt.
		$0_{\rm H}$ IntSPR interrupt is not masked. $1_{\rm H}$ IntSPR interrupt is masked.
12	(Reserved)	Reserved field
11	EnSPDD1	Short packet DMA Done mode is set.
		$0_{\rm H}$ Endpoint1 is not in the short packet DMA Done mode. $1_{\rm H}$ Endpoint1 is in the short packet DMA Done mode. Setting this mode simultaneously with short packet reception mode is prohibited.
10	EnSPR1	Short packet reception mode is set.
		$0_{\rm H}$ Endpoint1 is not in the short packet reception mode.
		$1_{\rm H}$ Endpoint1 is in the short packet reception mode.
		This mode should be proceeded with masking DMA transfer request. Moreover, setting this mode simultaneously with short packet DMA Done mode is prohibited.
9	NackResp1	Nac response is instructed to bulk IN/OUT transfer.
		$0_{\rm H}$ Endpoint1 performs normal response.
		1 _H Endpoint1 performs Nac response to bulk IN/OUT transfer.
8	NullResp1	Null response is instructed to bulk IN/interrupt IN transfer. When the value of this field is $1_{\rm H}$, Null response is carried out though data is in FIFO.
		0 _H Endpoint1 performs normal response. 1 _H Endpoint1 performs Null response to bulk IN/interrupt IN transfer.
7	TestMode1	Test mode setting to endpoint1 is specified.
		0 _H Endpoint1 performs normal response. 1 _H Endpoint1 shifts to the test mode that alternate value is able to be set directly.
6	StallDis1	When host issues SetInterface, and alternation setting is specified to endpoint1 interface, whether to perform Stall initialization automatically is specified.
		0 _H Stall is automatically initialized.
		1 _H Stall is not automatically initialized.

T	Bit field	Description
No.	Name	Description
5	ToggleDis1	When host issues SetInterface, and alternation setting is specified to endpoint1 interface, whether to perform Toggle initialization automatically is specified. $0_{\rm H}$ Toggle is automatically initialized. $1_{\rm H}$ Toggle is not automatically initialized.
4	IniStall1	This field is to instruct Stall initialization of endpoint1. $0_{\rm H}$ Stall is not initialized. $1_{\rm H}$ Stall is initialized. The value of this field automatically returns to $0_{\rm H.}$
3	IniToggle1	This field is to instruct Toggle initialization of endpoint1. $0_{\rm H}$ Toggle is not initialized. $1_{\rm H}$ Toggle is initialized.The value of this field automatically returns to $0_{\rm H}$
2	(Reserved)	Reserved field.
1	ReqStall1	Whether to perform stall response to host from endpoint1 is specified. 0 _H Stall response is not performed. 1 _H Stall response is performed.
0	Init1	This field is to instruct buffer initialization of endpoint1. $0_{\rm H}$ Buffer is not initialized. $1_{\rm H}$ Buffer is initialized. The value of this field automatically returns to $0_{\rm H.}$

24.5.24. USB Function Endpoint1 Status Register (UFEpS1)

Address		FFF7_010C _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		Crt	Intf		CrtAlt											
R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								(Rese	erved)							
R/W	R	R/W	R/W	R	R	R	R	R	R	R	R	R	R/W	R/W	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-28	CrtIntf1	Current interface value of endpoint1 is indicated.
27-24	CrtAlt1	Current alternate value of endpoint1 is indicated.
23	MskClStall1	IntCIStall1 interrupt request is indicated. When Stalled1 field becomes 0_H , the value of this field becomes 1_H . This field is cleared by writing 0_H . 0_H IntClStall1 interrupt is not requested. 1_H IntClStall1 interrupt is requested.
22	IntNack1	IntNack1 interrupt request is indicated. When Nack packet is sent, the value of this field becomes $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntNack1 interrupt is not requested. $1_{\rm H}$ IntNack1 interrupt is requested.
21	IntStalled1	IntStalled1 interrupt request is indicated. When Stalled1 field becomes 1_H , the value of this field becomes 1_H . This field is cleared by writing 0_H . 0_H IntStalled1 interrupt is not requested. 1_H IntStalled1 interrupt is requested.
20	IntEmpty 1	IntEmpty1 interrupt request is indicated. When buffer in endpoint1 becomes empty, the value of this field is $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntEmpty1 interrupt is not requested. $1_{\rm H}$ IntEmpty1 interrupt is requested.
19	IntDEnd1	IntDEnd1 interrupt request is indicated. When total count transfer ends at endpoint1, the value of this field becomes 1_H . This field is cleared by writing 0_H . 0_H IntDEnd1 interrupt is not requested. 1_H IntDEnd1 interrupt is requested.
18	IntAChg1	IntAChg1 interrupt request is indicated. When interface's alternate value including endpoint1 is updated by SetInterface from the host, the value of this field becomes $1_{\rm H}$. When the alternate value before and after the update is the same, the value of this field also becomes $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntAChg1 interrupt is not requested. $1_{\rm H}$ IntAChg1 interrupt is requested.
17	IntPing1	IntPing1 interrupt request is indicated. When ping is sent to endpoint1, the value of this field becomes 1_H . This field is cleared by writing 0_H . 0_H IntPing1 interrupt is not requested. 1_H IntPing1 interrupt is requested.

	Bit field	Description
No.	Name	Description
16	IntReady 1	IntReady1 interrupt request is indicated. When endpoint1 is set as IN transfer endpoint, data is able to be written to endpoint1 buffer and the value of this field becomes $1_{\rm H}$. When endpoint1 is set as OUT transfer endpoint, data is able to be read from endpoint1 buffer and the value of this field becomes $1_{\rm H}$. In both cases, this field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntReady1 interrupt is not requested. $1_{\rm H}$ IntReady1 interrupt is requested.
15	(Reserved)	Reserved field
14	IntSPDD1	IntSPDD1 interrupt request is indicated.
		0 _H IntSPDD1 interrupt is not requested. 1 _H IntSPDD1 interrupt is requested.
13	IntSPR1	IntSPR1 interrupt request is indicated. When the packet which is able to be read from endpoint1 buffer is short packet, the value of this field becomes 1_H . This is valid when endpoint1 is set to bulk OUT. 0_H IntSPR1 interrupt is not requested. 1_H IntSPR1 interrupt is requested.
12	Empty1	Whether endpoint1 buffer is empty is indicated.
		$0_{\rm H}$ Buffer is not empty. $1_{\rm H}$ Buffer is empty.
11-4	(Reserved)	Reserved field
3	Ready10	Whether OUT transfer buffer of endpoint1 is busy is indicated. $0_{\rm H}$ Buffer is busy that data is unable to be read. $1_{\rm H}$ Buffer is not busy that the data received in buffer by OUT transfer is able to be read. The value of this field is cleared by writing $1_{\rm H}$, and buffer is able to receive new data by OUT transfer. When new data is received and its reading is ready, the value of this field becomes $1_{\rm H}$ again.
2	Ready li	Whether IN transfer buffer of endpoint1 is busy is indicated. $0_{\rm H}$ Buffer is busy that data is unable to be written. $1_{\rm H}$ Buffer is not busy that the data to be sent by IN transfer is able o be written. The value of this field is cleared by writing $1_{\rm H}$; at the same time, the data in buffer is sent to USB by IN transfer. When data is able to be written to the buffer again, the value of this field becomes $1_{\rm H}$.
1	Stalled1	Whether the state of endpoint1 is stall is indicated.
		$0_{\rm H}$ The state is not stall. $1_{\rm H}$ The state is stall.
0	(Reserved)	Reserved field

24.5.25. USB Function Endpoint2 Control Register (UFEpC2)

Address		FFF7_0110 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)					Test	Alt2									
R/W	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
Initial value	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-28	(Reserved)	Reserved field.
27-24	TestAlt2	This field is to directly set alternate value for testing. Writing is enabled when TestMode2 field value is $1_{\rm H}$.
23	MskClStall2	This is mask bit to IntClStall2 interrupt. 0_H IntClStall2 interrupt is not masked 1_H IntClStall2 interrupt is masked
22	MskNack2	0_H IntNack2 interrupt is not masked. 1_H IntNack2 interrupt is masked.
21	MskStalled2	This is mask bit to IntStalled2 interrupt. 0_H IntStalled2 interrupt is not masked. 1_H IntStalled2 interrupt is masked.
20	MskEmpty2	This is mask bit to IntEmpty2 interrupt. O_H IntEmpty2 interrupt is not masked. 1_H IntEmpty2 interrupt is masked.
19	MskDEnd2	This is mask bit to IntDEnd2 interrupt. 0_H IntDEnd2 interrupt is not masked. 1_H IntDEnd2 interrupt is masked.
18	MskAChg2	This is mask bit to IntAChg2 interrupt. $0_{\rm H}$ IntAChg2 interrupt is not masked. $1_{\rm H}$ IntAChg2 interrupt is masked.
17	MskPing2	This is mask bit to IntPing2 interrupt. 0_H IntPing2 interrupt is not masked. 1_H IntPing2 interrupt is masked.
16	MskReady2	This is mask bit to IntReady2 interrupt. 0_H IntReady2 interrupt is not masked. 1_H IntReady2 interrupt is masked.

	Bit field	
No.	Name	Description
15	IniFifo2	When the value of EnIniFifo field of CustomCnt register is $1_{\rm H}$, this register becomes valid. Moreover, FIFO surroundings of endpoint2 are initialized. $0_{\rm H}$ Initialization is not performed
		1 _H Initialization of FIFO at endpoint2 is performed. IntReady2, Ready2, Empty2, IntEmpty2 of UFEpS2 register, DmaReq1, DmaReq2 of UFEpDS register, TCNT1, TCNT2 of UFEpTC2 register, and Size2 of UFEpRS2 register are also initialized.
		After writing $1_{\rm H}$, the value of this bit automatically returns to $0_{\rm H}$.
14	MskSPDD2	This is mask bit to IntSPDD2 interrupt.
		0 _H IntSPDD2 interrupt is not masked. 1 _H IntSPDD2 interrupt is masked.
13	MskSPR2	This is mask bit to IntSPR2 interrupt.
		$0_{\rm H}$ IntSPR2 interrupt is not masked. $1_{\rm H}$ IntSPR2 interrupt is masked.
12	(Reserved)	Reserved field
11	EnSPDD2	Short packet DMA Done mode is set.
		$0_{\rm H}$ Endpoint2 is not in the short packet DMA Done mode. $1_{\rm H}$ Endpoint2 is in the short packet DMA Done mode. Setting this mode simultaneously with short packet reception mode is prohibited.
10	EnSPR2	Short packet reception mode is set.
		$0_{\rm H}$ Endpoint2 is not in the short packet reception mode.
		$1_{\rm H}$ Endpoint2 is in the short packet reception mode.
		This mode should be proceeded with masking DMA transfer request. Moreover, setting this mode simultaneously with short packet DMA Done mode is prohibited.
9	NackResp2	Nac response is instructed to bulk IN/OUT transfer.
		0 _H Endpoint2 performs normal response.
		1 _H Endpoint2 performs Nac response to bulk IN/OUT transfer.
8	NullResp2	Null response is instructed to bulk IN/interrupt IN transfer. When the value of this field is 1_{H_1} Null response is carried out though data is in FIFO.
		0_HEndpoint2 performs normal response.1_HEndpoint2 performs Null response to bulk IN/interrupt IN transfer.
7	TestMode2	Test mode setting to endpoint2 is specified.
		0 _H Endpoint1 performs normal operation. 1 _H Endpoint2 shifts to the test mode that alternate value is able to be set directly.
6	StallDis2	When host issues SetInterface and alternation setting is specified to endpoint2 interface, whether to perform Stall initialization automatically is specified.
		0 _H Stall is automatically initialized. 1 _H Stall is not automatically initialized.

T.	Bit field	Description
No.	Name	Description
5	ToggleDis2	When host issues SetInterface and alternation setting is specified to endpoint2 interface, whether to perform Toggle initialization automatically is specified. 0_H Toggle is automatically initialized. 1_H Toggle is not automatically initialized.
4	IniStall2	This field is to instruct Stall initialization of endpoint2. $0_{\rm H}$ Stall is not initialized. $1_{\rm H}$ Stall is initialized. The value of this field automatically returns to $0_{\rm H.}$
3	IniToggle2	This field is to instruct Toggle initialization of endpoint2. $0_{\rm H}$ Toggle is not initialized. $1_{\rm H}$ Toggle is initialized. The value of this field automatically returns to $0_{\rm H}$.
2	(Reserved)	Reserved field.
1	ReqStall2	Whether to perform stall response to host from endpoint2 is indicated. 0 _H Stall response is not performed. 1 _H Stall response is performed.
0	Init2	This field is to instruct buffer initialization of endpoint2. $0_{\rm H}$ Buffer is not initialized. $1_{\rm H}$ Buffer is initialized. The value of this field automatically returns to $0_{\rm H.}$

24.5.26. USB Function Endpoint2 Status Register (UFEpS2)

Address		FFF7_0114 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		CrtI	ntf2		CrtAlt2											
R/W	R	R	R	R	R	R	R	R	R/W							
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					(Reserved)											
R/W	R	R/W	R/W	R	R	R	R	R	R	R	R	R	R/W	R/W	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-28	CrtIntf2	Current interface value of endpoint2 is indicated.
27-24	CrtAlt2	Current alternate value of endpoint2 is indicated.
23	MskClStall2	IntCIStall2 interrupt request is indicated. When Stalled2 field becomes 0_H , the value of this field becomes 1_H . This field is cleared by writing 0_H . 0_H IntClStall2 interrupt is not requested. 1_H IntClStall2 interrupt is requested.
22	IntNack2	IntNack2 interrupt request is indicated. When Nack packet is sent, the value of this field becomes $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntNack2 interrupt is not requested. $1_{\rm H}$ IntNack2 interrupt is requested.
21	IntStalled2	IntStalled2 interrupt request is indicated. When Stalled2 field becomes 1_H , the value of this field becomes 1_H . This field is cleared by writing 0_H . 0_H IntStalled2 interrupt is not requested. 1_H IntStalled2 interrupt is requested.
20	IntEmpty2	IntEmpty2 interrupt request is indicated. When buffer in endpoint2 becomes empty, the value of this field is $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntEmpty2 interrupt is not requested. $1_{\rm H}$ IntEmpty2 interrupt is requested.
19	IntDEnd2	IntDEnd2 interrupt request is indicated. When total count transfer ends at endpoint2, the value of this field becomes $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntDEnd2 interrupt is not requested. $1_{\rm H}$ IntDEnd2 interrupt is requested.
18	IntAChg2	IntAChg2 interrupt request is indicated. When interface's alternate value including endpoint2 is updated by SetInterface from the host, the value of this field becomes $1_{\rm H}$. When the alternate value before and after the update is the same, the value of this field also becomes $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntAChg2 interrupt is not requested. $1_{\rm H}$ IntAChg2 interrupt is requested.
17	IntPing2	IntPing2 interrupt request is indicated. When Ping is sent to endpoint2, the value of this field becomes $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntPing2 interrupt is not requested. $1_{\rm H}$ IntPing2 interrupt is requested.

]	Bit field	Description
No.	Name	- Description
16	IntReady2	IntReady2 interrupt request is indicated. When endpoint2 is set as IN transfer endpoint, data is able to be written to endpoint2 buffer and the value of this field becomes $1_{\rm H}$. When endpoint2 is set as OUT transfer endpoint, data is able to be read from endpoint2 buffer and the value of this field becomes $1_{\rm H}$. In both cases, this field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntReady2 interrupt is not requested. $1_{\rm H}$ IntReady2 interrupt is requested.
15	(Reserved)	Reserved field.
14	IntSPDD2	IntSPDD2 interrupt request is indicated. $0_{\rm H}$ IntSPDD2 interrupt is not requested. $1_{\rm H}$ IntSPDD2 interrupt is requested.
13	IntSPR2	IntSPR2 interrupt request is indicated. When the packet which is able to be read from endpoint2 buffer is short packet, the value of this field becomes 1_H . This is valid when endpoint2 is set to bulk OUT. 0_H IntSPR2 interrupt is not requested. 1_H IntSPR2 interrupt is requested.
12	Empty2	Whether endpoint2 buffer is empty is indicated. 0_H Buffer is not empty. 1_H Buffer is empty.
11-4	(Reserved)	Reserved field.
3	Ready2o	Whether OUT transfer buffer of endpoint2 is busy is indicated. 0 _H Buffer is busy that data is unable to be read. 1 _H Buffer is not busy that the data received in buffer by OUT transfer is able to be read. The value of this field is cleared by writing 1 _H , and new data is able to be received to buffer by OUT transfer. When new data is received in the buffer and its reading is ready, the value of this field becomes 1 _H again.
2	Ready2i	Whether IN transfer buffer of endpoint2 is busy is indicated. $0_{\rm H}$ Buffer is busy that data is unable to be written. $1_{\rm H}$ Buffer is not busy that the data to be sent by IN transfer is able to be written. The value of this field is cleared by writing $1_{\rm H}$; at the same time, the data in buffer is sent to USB by IN transfer. When data is able to be written to the buffer again, the value of this field becomes $1_{\rm H}$.
1	Stalled2	Whether the state of endpoint2 is stall is indicated. 0_H The state not is stall. 1_H The state is stall.
0	(Reserved)	Reserved field.

24.5.27. USB Function Endpoint3 Control Register (UFEpC3)

Address		FFF7_0118 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)					Test	Alt3									
R/W	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
Initial value	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-28	(Reserved)	Reserved field.
27-24	TestAlt3	This field is to directly set alternate value for testing. Writing is enabled when TestMode3 field value is $1_{\rm H}$.
23	MskClStall3	This is mask bit to IntClStall3 interrupt. 0_H IntClStall3 interrupt is not masked. 1_H IntClStall3 interrupt is masked.
22	MskNack3	This is mask bit to IntNack3 interrupt. 0_H IntNack3 interrupt is not masked. 1_H IntNack3 interrupt is masked.
21	MskStalled3	This is mask bit to IntStalled3 interrupt. 0_H IntStalled3 interrupt is not masked. 1_H IntStalled3 interrupt is masked.
20	MskEmpty3	This is mask bit to IntEmpty3 interrupt. 0_H IntEmpty3 interrupt is not masked. 1_H IntEmpty3 interrupt is masked.
19	MskDEnd3	This is mask bit to IntDEnd3 interrupt. 0_H IntDEnd3 interrupt is not masked. 1_H IntDEnd3 interrupt is masked.
18	MskAChg3	This is mask bit to IntAChg3 interrupt. 0_H IntAChg3 interrupt is not masked. 1_H IntAChg3 interrupt is masked.
17	MskPing3	This is mask bit to IntPing3 interrupt. 0_H IntPing3 interrupt is not masked. 1_H IntPing3 interrupt is masked.
16	MskReady3	This is mask bit to IntReady3 interrupt. 0_H IntReady3 interrupt is not masked. 1_H IntReady3 interrupt is masked.

FUĴITSU

	Bit field	
No.	Name	Description
15	IniFifo3	When the value of EnIniFifo field of CustomCnt register is $1_{\rm H}$, this register becomes valid. Moreover, FIFO surroundings of endpoint3 are initialized $0_{\rm H}$ Initialization is not performed.
		 Initialization of FIFO at endpoint3 is performed. IntReady3, Ready3, Empty3, IntEmpty3 of UFEpS3 register, DmaReq1, DmaReq2 of UFEpDS register, TCNT1, TCNT2 of UFEpTC3 register, and Size3 of UFEpRS3 register are also initialized.
		After writing $1_{\rm H}$, the value of this bit automatically returns to $0_{\rm H}$.
14	MskSPDD3	This is mask bit to IntSPDD3 interrupt.
		0 _H IntSPDD3 interrupt is not masked. 1 _H IntSPDD3 interrupt is masked.
13	MskSPR3	This is mask bit to IntSPR3 interrupt.
		$0_{\rm H}$ IntSPR3 interrupt is not masked. $1_{\rm H}$ IntSPR3 interrupt is masked.
12	(Reserved)	Reserved field.
11	EnSPDD3	Short packet DMA Done mode is set.
		0 _H Endpoint3 is not in the short packet DMA Done mode. 1 _H Endpoint3 is in the short packet DMA Done mode. Setting this mode simultaneously with short packet reception mode is prohibited.
10	EnSPR3	Short packet reception mode is set.
		0 _H Endpoint3 is not in the short packet reception mode.
		$1_{\rm H}$ Endpoint3 is in the short packet reception mode.
		This mode should be proceeded with masking DMA transfer request. Moreover, setting this mode simultaneously with short packet DMA Done mode is prohibited.
9	NackResp3	Nac response is instructed to bulk IN/OUT transfer.
		$0_{\rm H}$ Endpoint1 performs normal response.
		1 _H Endpoint1 performs Nac response to bulk IN/OUT transfer.
8	NullRes3	Null response is instructed to bulk IN/interrupt IN transfer. When the value of this field is $1_{\rm H}$, Null response is carried out though data is in FIFO.
		0_HEndpoint3 performs normal response.1_HEndpoint3 performs Null response to bulk IN/interrupt IN transfer.
7	TestMode3	Test mode setting to endpoint3 is specified.
		0 _H Endpoint3 performs normal operation. 1 _H Endpoint3 shifts to the test mode that alternate value is able to be set directly.
6	StallDis3	When host issues SetInterface and alternation setting is specified to endpoint3 interface, whether to perform Stall initialization automatically is specified.

T	Bit field	Description
No.	Name	Description
5	ToggleDis3	When host issues SetInterface and alternation setting is specified to endpoint3 interface, whether to perform Toggle initialization automatically is specified. $0_{\rm H}$ Toggle is automatically initialized. $1_{\rm H}$ Toggle is not automatically initialized.
4	IniStall3	This field is to instruct Stall initialization of endpoint3. $0_{\rm H}$ Stall is not initialized. $1_{\rm H}$ Stall is initialized. The value of this field automatically returns to $0_{\rm H.}$
3	IniToggle3	This field is to instruct Toggle initialization of endpoint3. $0_{\rm H}$ Toggle is not initialized. $1_{\rm H}$ Toggle is initialized. The value of this field automatically returns to $0_{\rm H}$.
2	(Reserved)	Reserved field.
1	ReqStall3	Whether to perform stall response to host from endpoint3 is indicated. 0 _H Stall response is not performed. 1 _H Stall response is performed.
0	Init3	This field is to instruct buffer initialization of endpoint3. $0_{\rm H}$ Buffer is not initialized. $1_{\rm H}$ Buffer is initialized. The value of this field automatically returns to $0_{\rm H.}$

24.5.28. USB Function Endpoint3 Status Register (UFEpS3)

Address								FFF7_	011C _H							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		CrtI	ntf3			Crt	Alt3									
R/W	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								(Rese	erved)							
R/W	R	R/W	R/W	R	R	R	R	R	R	R	R	R	R/W	R/W	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-28	CrtIntf3	Current interface value of endpoint3 is indicated.
27-24	CrtAlt3	Current alternate value of endpoint3 is indicated.
23	MskClStall3	IntCIStall3 interrupt request is indicated. When Stalled3 field becomes 0_H , the value of this field becomes 1_H . This field is cleared by writing 0_H . 0_H IntClStall3 interrupt is not requested. 1_H IntClStall3 interrupt is requested.
22	IntNack3	IntNack3 interrupt request is indicated. When Nack packet is sent, the value of this field becomes 1_H . This field is cleared by writing 0_H . 0_H IntNack3 interrupt is not requested. 1_H IntNack3 interrupt is requested.
21	IntStalled3	IntStalled3 interrupt request is indicated. When Stalled3 field becomes 1_H , the value of this field also becomes 1_H . This field is cleared by writing 0_H . 0_H IntStalled3 interrupt is not requested. 1_H IntStalled3 interrupt is requested.
20	IntEmpty3	IntEmpty3 interrupt request is indicated. When buffer in endpoint3 becomes empty, the value of this field is $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntEmpty3 interrupt is not requested. $1_{\rm H}$ IntEmpty3 interrupt is requested.
19	IntDEnd3	IntDEnd3 interrupt request is indicated. When total count transfer ends at endpoint3, the value of this field becomes $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntDEnd3 interrupt is not requested. $1_{\rm H}$ IntDEnd3 interrupt is requested.
18	IntAChg3	IntAChg3 interrupt request is indicated. When interface's alternate value including endpoint1 is updated by SetInterface from the host, the value of this field becomes $1_{\rm H}$. When the alternate value before and after the update is the same, the value of this field also becomes $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntAChg3 interrupt is not requested. $1_{\rm H}$ IntAChg3 interrupt is requested.
17	IntPing3	IntPing3 interrupt request is indicated. When Ping is sent to endpoint3, the value of this field becomes $1_{\rm H}$. This field is cleared by writing $0_{\rm H}$. $0_{\rm H}$ IntPing3 interrupt is not requested. $1_{\rm H}$ IntPing3 interrupt is requested.

]]	Bit field	Description
No.	Name	Description
16	IntReady3	IntReady3interrupt request is indicated. When endpoint3 is set as IN transfer endpoint, data is able to be written to endpoint3 buffer and the value of this field becomes 1_{H} . When endpoint3 is set as OUT transfer endpoint, data is able to be read from endpoint3 buffer and the value of this field becomes 1_{H} . In both cases, this field is cleared by writing 0_{H} . 0_{H} IntReady3 interrupt is not requested. 1_{H} IntReady3 interrupt is requested.
15	(Reserved)	Reserved field.
14	IntSPDD3	IntSPDD3 interrupt request is indicated. 0 _H IntSPDD3 interrupt is not requested. 1 _H IntSPDD3 interrupt is requested.
13	IntSPR3	IntSPR3 interrupt request is indicated. When the packet which is able to be read from endpoint3 buffer is short packet, the value of this field becomes 1_H . This is valid when endpoint is set to bulk OUT. 0_H IntSPR3 interrupt is not requested. 1_H IntSPR3 interrupt is requested.
12	Empty3	Whether endpoint3 buffer is empty is indicated. 0_H Buffer is not empty. 1_H Buffer is empty.
11-4	(Reserved)	Reserved field.
3	Ready3o	Whether OUT transfer buffer of endpoint3 is busy is indicated. 0_H Buffer is busy that data is unable to be read. 1_H Buffer is not busy that the data received in buffer by OUT transfer is able to be read. The value of this field is cleared by writing 1_H , and new data is able to be received to buffer by OUT transfer. When new data is received in the buffer and its reading is ready, the value of this field becomes 1_H again.
2	Ready3i	Whether IN transfer buffer of endpoint3 is busy is indicated. $0_{\rm H}$ Buffer is busy that data is unable to be written. $1_{\rm H}$ Buffer is not busy that the data to be sent by IN transfer is able to be written. The value of this field is cleared by writing $1_{\rm H}$; at the same time, the data in buffer is sent to USB by IN transfer. When data is able to be written to the buffer again, the value of this field becomes $1_{\rm H}$.
1	Stalled3 (Reserved)	Whether the state of endpoint3 is stall is indicated. 0_H The state is not stall. 1_H The state is stall. Reserved field.
U	(Reserveu)	

24.5.29. USB Function Endpoint0 IN Buffer Register (UFEpIB0)

Address	FFF7_0180 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		EpInBuf														
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								EpIı	nBuf							
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-0	EpInBuf	IN transfer buffer for Endpoint0.

24.5.30. USB Function Endpoint1 IN Buffer Register (UFEpIB1)

Address	FFF7_0184 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		EpInBuf														
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								EpIı	nBuf							
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Ì	Bit field	Description
No.	Name	Description
31-0	EpInBuf	IN transfer buffer for Endpoint1.

24.5.31. USB Function Endpoint2 IN Buffer Register (UFEpIB2)

Address	FFF7_0188 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		EpInBuf														
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								EpIı	nBuf							
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-0	EpInBuf	IN transfer buffer for Endpoint2.

24.5.32. USB Function Endpoint3 IN Buffer Register (UFEpIB3)

Address	FFF7_018C _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		EpInBuf														
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								EpIı	nBuf							
R/W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1	Bit field	Description
No.	Name	Description
31-0	EpInBuf	IN transfer buffer for Endpoint3.

24.5.33. USB Function Endpoint0 OUT Buffer Register (UFEpOB0)

Address	FFF7_01C0 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		EpOutBuf														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								EpO	utBuf							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	Bit field	Description
No.	Name	Description
31-0	EpOutBuf	OUT transfer buffer for Endpoint0.

24.5.34. USB Function Endpoint1 OUT Buffer Register (UFEpOB1)

Address	FFF7_01C4 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		EpOutBuf														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	-	-	-	-	-	-	-	1	-	-	1	-	1	-	-	-
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								EpO	utBuf							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	Bit field	Description
No.	Name	Description
31-0	EpOutBuf	OUT transfer buffer for Endpoint1.

24.5.35. USB Function Endpoint2 OUT Buffer Register (UFEpOB2)

Address	FFF7_01C8 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		EpOutBuf														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	-	1	-	-	-	1	1	1	1	1	-	1	-	-	-	-
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								EpO	utBuf							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	Bit field	Description
No.	Name	Description
31-0 EpOutBuf O		OUT transfer buffer for Endpoint2.

24.5.36. UFConfig Registers

Address	FFF7_0200 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		Make-Up Data														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								Make-U	Jp Data	ι						
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0

EndPoint information of the protocol engine is set.

Be sure to complete the setting before communication starts.

	Bit field	Description
No.	Name	Description
31-0	Make-Up Data	Set 01200120_{H} for the data setting value.

Address		FFF7_0204 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	Nui	nTr		Size Alt												
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Alt		In	ntf			Co	onf		Type IO				EpN	EpNum	
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

EndPoint0 information of the protocol engine is set.

Be sure to complete the setting before communication starts.

	Bit field	Description
No.	Name	Description
31-30	NumTr	Set 2'b00 for the data setting value.
29-19	Size	Max. packet size setting of EndPoint0. Set followings: 8 byte: 11'B000_0000_1000 or 64 byte: 11'b000_0100_0000.
18-15	Alt	Set 4'b0000 for the data setting value.
14-11	Intf	Set 4'b0000 for the data setting value.
10-7	Conf	Set 4'b0000 for the data setting value.
6-5	Туре	EndPoint0 type setting. Set 2'b00 of the Control transfer.
4	Ю	EndPoint0 IN/OUT setting. Set 1'b0 of the OUT setting. 1'B0 setting: OUT 1'B1 setting: IN
3-0	EpNum	EndPoint number setting. Set 4'h0 for the data setting value.

Address	FFF7_0208 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	Nui	nTr						Size							Alt	
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Alt		Ir	ntf			Co	onf		Ту	pe	IO		EpN	Jum	
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

EndPoint1 information of the protocol engine is set.

Be sure to complete the setting before communication starts.

	Bit field	Description
No.	Name	Description
31-30	NumTr	Set 2'b00 for the data setting value.
29-19	Size	Max. packet size setting of EndPoint1. Set followings: 64 byte (full speed): 11'b000_0100_0000 512 byte (high speed): 11'b010_0000_0000.
18-15	Alt	Set 4'b0000 for the data setting value.
14-11	Intf	Set 4'b0000 for the data setting value.
10-7	Conf	Set 4'b0000 for the data setting value.
6-5	Туре	EndPoint1 type setting. Set 2'b10 of the bulk transfer.
4	ΙΟ	EndPoint1 IN/OUT setting. 1'b0 setting: OUT 1'b1 setting: IN
3-0	EpNum	EndPoint number setting. Set 4'h1 for the data setting value.

Address	FFF7_020C _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	Nui	nTr		Size Alt												
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Alt		Ir	ntf			Co	onf		Ту	Туре			EpN	Jum	
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

EndPoint2 information of the protocol engine is set.

Be sure to complete the setting before communication starts.

	Bit field	Description
No.	Name	Description
31-30	NumTr	Set 2'b00 for the data setting value.
29-19	Size	Max. packet size setting of EndPoint2. Set followings: 64 byte (full speed): 11'b000_0100_0000 512 byte (high speed): 11'b010_0000_0000.
18-15	Alt	Set 4'b0000 for the data setting value.
14-11	Intf	Set 4'b0000 for the data setting value.
10-7	Conf	Set 4'b0000 for the data setting value.
6-5	Туре	EndPoint2 type setting. Set 2'b10 of the bulk transfer.

FUĴITSU

	Bit field	Description						
No.	Name	Description						
4	ΙΟ	EndPoint2 IN/OUT setting. 1'b0 setting: OUT 1'b1 setting: IN						
3-0		EndPoint number setting. Set 4'h2 for the data setting value.						

Address		FFF7_0210 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name	Nui	nTr	r					Size						Alt			
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	Alt		Ir	Intf			Conf				Type IO			EpNum			
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	
Initial value	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	

EndPoint3 information of the protocol engine is set.

Be sure to complete the setting before communication starts.

	Bit field	Description
No.	Name	Description
31-30	NumTr	Set 2'b00 for the data setting value.
29-19	Size	Max. packet size setting of EndPoint3. Set followings: 8 byte (full speed): 11'b000_0000_1000 64 byte (high speed): 11'b000_0100_0000
18-15	Alt	Set 4'b0000 for the data setting value.
14-11	Intf	Set 4'b0000 for the data setting value.
10-7	Conf	Set 4'b0000 for the data setting value.
6-5	Туре	EndPoint3 type setting. Set 2'b11 of the interrupt transfer.
4	Ю	EndPoint3 IN/OUT setting. Settings except IN setting are prohibited in the interrupt transfer. 1'b0 setting: OUT 1'b1 setting: IN
3-0	EpNum	EndPoint number setting. Set 4'h3 for the data setting value.

24.5.37. USB Function Endpoint1 DMA Control/Status Register (UFEpDC1)

Address		FFF7_0404 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved)								EpNF1	EpNE1	EpAI1	EpIO1	EpDF1	EpDM1	EpDI1	EpDE1
R/W	R	R	R	R	R	R	R	R	R/W							
Initial value	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0

	Bit field	Description
No.	Name	Description
31-8	(Reserved)	Reserved field
7	EpNF1	Whether Null packet is received is indicated. This field is cleared by writing 0 _H .
		0 _H Null packet is not received.
		1 _H Null packet is received.
		If this is not masked, Null packet reception interrupt occurs.
6	EpNE1	This is enable bit to Null packet reception interrupt.
		0 _H Null packet reception interruption does not occur.
		1 _H Null packet reception interruption occurs.
5	EpAI1	Update method of DMA transfer address is specified.
		$0_{\rm H}$ The address set to EpDA1 register is repeatedly used.
		$1_{\rm H}$ DMA transfer is performed with incrementing the address.
4	EpIO1	Endpoint1 IN/OUT is specified.
		0 _H Endpoint1 is IN endpoint.
		1 _H Endpoint1 is OUT endpoint.
3	EpDF1	This is status bit that shows fail/abort of DMA transfer.
		0 _H Fail/Abort do not occur.
		$1_{\rm H}$ Error occurs and transfer stops. The value of this field is cleared
		by writing $0_{\rm H}$. Writing $1_{\rm H}$ forcibly ends the process.
2	EpDM1	This is mask bit to DMA transfer end interrupt.
		$0_{\rm H}$ DMA transfer end interrupt is not masked.
		$1_{\rm H}$ DMA transfer end interrupt is masked.
1	EpDI1	This is status bit indicating occurrence of DMA transfer end interrupt request.
		0 _H DMA transfer end interrupt request does not occur.
		1 _H DMA transfer end interrupt request occurs.
		If this is not masked, DMA transfer end interrupt occurs. Although the transfer is discontinued by error, the value of this
		Field becomes $I_{\rm H}$
		The value of this field is cleared by writing $0_{\rm H}$.

	Bit field	Description
No.	Name	Distription
0	EpDE1	This is DMA transfer enable bit.
		0 _H DMA transfer is disabled. The transfer is forcibly terminated by writing 0 _H to this field during DMA transfer. 1 _H DMA transfer is enabled. When DMA transfer is requested from endpoint1 and the value of this field is 1 _H , DMA transfer is performed.

24.5.38. USB Function Endpoint2 DMA Control/Status Register (UFEpDC2)

Address		FFF7_0408 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				EpNF2	EpNE2	EpAI2	EpIO2	EpDF2	EpDM2	EpDI2	EpDE2
R/W	R	R	R	R	R	R	R	R	R/W							
Initial value	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0

	Bit field	Description
No.	Name	Description
31-8	(Reserved)	Reserved field
7	EpNF2	Whether Null packet is received is indicated. The value of this field is cleared by writing $0_{\rm H}$.
		0 _H Null packet is not received.
		1 _H Null packet is received. If this is masked, Null packet reception interrupt occurs.
		If uns is masked, iven packet reception interrupt occurs.
6	EpNE2	This is enable bit to Null packet reception interrupt.
		0 _H Null packet reception interruption does not occur.
		1 _H Null packet reception interruption occurs.
5	EpAI2	Update method of DMA transfer address is specified.
		$0_{\rm H}$ The address set to EpDA2 register is repeatedly used.
		$1_{\rm H}$ DMA transfer is performed with incrementing the address.
4	EpIO2	Endpoint2 IN/OUT is specified.
		0 _H Endpoint2 is IN endpoint.
		1 _H Endpoint2 is OUT endpoint.
3	EpDF2	This is status bit that shows fail/abort of the DMA transfer.
		0 _H Fail/Abort do not occur
		$1_{\rm H}$ Error occurs and transfer stops. The value of this field is cleared
		by writing $0_{\rm H}$. Writing $1_{\rm H}$ forcibly ends the process.
2	EpDM2	This is mask bit to DMA transfer end interrupt.
		0 _H DMA transfer end interrupt is not masked.
		$1_{\rm H}$ DMA transfer end interrupt is masked.
1	EpDI2	This is status bit indicating occurrence of DMA transfer end interrupt request.
		0 _H DMA transfer end interrupt request does not occur.
		1 _H DMA transfer end interrupt request occurs.
		If this is not masked, DMA transfer end interrupt occurs. Although the transfer is discontinued by error, the value of this
		field becomes $1_{\rm H}$.
		The value of this field is cleared by writing $0_{\rm H}$.

	Bit field	Description
No.	Name	Description
0	EpDE2	This is DMA transfer enable bit.
		$0_{\rm H}$ DMA transfer is disabled. The transfer is forcibly terminated by writing $0_{\rm H}$ to this field during DMA transfer.
		 1_H DMA transfer is enabled. When DMA transfer is requested from endpoint2 and the value of this field is 1_H, DMA transfer is performed.

24.5.39. USB Function Endpoint1 DMA Address Register (UFEpDA1)

Address		FFF7_0414 _H														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		EpDA1														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								EpI	DA1							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-0	EpDA1	Start address of DMA transfer to endpoint1 is stored. Low order 2 bits are fixed to 0.

24.5.40. USB Function Endpoint2 DMA Address Register (UFEpDA2)

Address	FFF7_0418 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	EpDA2															
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	EpDA2															
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit field		Descriptio	n
No.	Name	Descriptio	11
31-0	EpDA2	Start address of DMA transfer to endpoint2 is stored.	The 2 least significant bits are fixed to 0.

24.5.41. USB Function Endpoint1 DMA Size Register (UFEpDS1)

Address	FFF7_0424 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	EpDS1															
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								EpI	DS1							
R/W	R/W	R/W	R?W	R?W	R/W											
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Description
No.	Name	Description
31-0	-	When endpoint1 is set to IN endpoint, number of DMA transfer byte - 1 of endpoint1 should be set. If it is set to OUT endpoint, set 0000000_{H} .

24.5.42. USB Function Endpoint2 DMA Size Register (UFEpDS2)

Address	FFF7_0428 _H															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	EpDS2															
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	EpDS2															
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R?W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

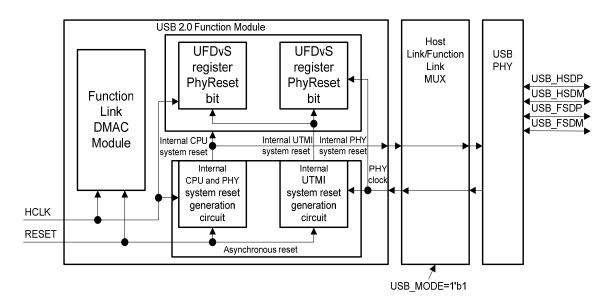
	Bit field	Description							
No.	Name	Description							
31-0		When endpoint2 is set to IN endpoint, number of DMA transfer byte - 1 of endpoint2 should be set. If it is set to OUT endpoint, set 0000000_{H} .							

24.6. Operation

24.6.1. EndPoint composition

Table 24-3 EndPoint composition

	Ep#			HS		FS							
		Cf#	If#	Al#	Туре	Size	Cf#	If#	Al#	Туре	Size		
А	Ep0i	-	-	-	Ctl-In	64	-	-	-	Ctl-In	64		
	Ep0o	-	-	-	Ctl-Out	64	-	-	-	Ctl-Out	64		
В	Ep0i	-	-	-	Ctl-In	64	-	-	-	Ctl-In	8		
	Ep0o	-	-	-	Ctl-Out	64	-	-	-	Ctl-Out	8		
С	Ep1~2	1	0	0	Blk-Out	512	1	0	0	Blk-Out	64		
	Ep1~2	1	0	0	Blk-In	512	1	0	0	Blk-In	64		
D	Ep3	1	0	0	Int-In	64	1	0	0	Int-In	8		


Ep0i and Ep0o are accessible in all configurations.

MaxPacketSize of Ep0i and Ep0o is able to select above A or B column.

Ep1~2 is able to select 2 settings of C column.

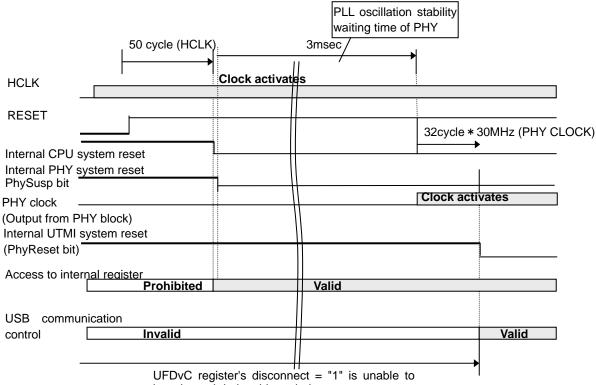
Ep3 setting is in D column.

24.6.2. Reset sequence

Reset system chart of function link part is shown in Figure 242.

Figure 24-2 Reset system chart of function link part

RESET is provided to each internal pin of "Internal CPU system reset" and "Internal UTMI system reset" in function link DMAC block and function link block as well as "Internal PHY system reset" in PHY. "Internal CPU system reset" and "Internal PHY system reset" are generated from the same generation circuit the same timing. Since these internal reset signals are held for certain time even after reset release, register access and USB communication are able to start after the reset release.


At the same time of asserting reset, USB_HSDP, USB_HSDM, USB_FSDP, and USB_FSDM shift to input state.

There are following two cases of the sequences from the reset release to USB communication start:

- 1. DisConnect of the UFDvC register is released within 6ms to start communication after internal UTMI system reset is released.
- 2. After internal UTMI system reset is released, DisConnect is released after shifting to suspend state without releasing it for 6ms or more.

See the following pages for more detail.

24.6.3. To start communication with releasing DisConnect of the UFDvC register within 6ms after internal UTMI system reset is released

be released during this period.

Figure 24-3 USB communication's start timing

"Internal CPU system reset" and "Internal PHY reset" are asserted continuously for 49 cycle × HCLK time after reset release. Therefore, register access is able to perform after "Internal CPU system reset" is released.

"Internal UTMI system reset" is asserted continuously for about 3ms with setting "0" to PhySusp bit of the UFDvC register after releasing "Internal PHY system reset" and "Internal CPU system reset". Therefore, USB communication is able to be performed after "Internal UTMI system reset" is released.

Judgment of "Internal UTMI system reset" release is performed by monitoring PhyReset bit of the UFDvS register. DisConnect bit of the UFDvC register is not able to be reset to "0" until "Internal UTMI system reset" is released. About 3ms of period that "Internal UTMI system reset" needs is the required time for internal PLL, which generates PHY clock, to proceed stable oscillation. Since this time is managed by USB_CRYCK48, reference clock of PLL, USB_CRYCK48 input is required at reset.

When setting DisConnect bit of the UFDvC register to "0" within 6ms after "Internal UTMI system reset" is released, USB_HSDP is immediately connected to pull-up resistor and USB communication starts.

If the time exceeds 6ms after "Internal UTMI system reset" is released, macro shifts to suspend state that USB_HSDP is not connected even DisConnect bit is released. This operation is described in the next page.

24.6.4. To release DisConnect after shifting the state to suspend without releasing DisConnect for 6ms or more after internal UTMI system reset is released

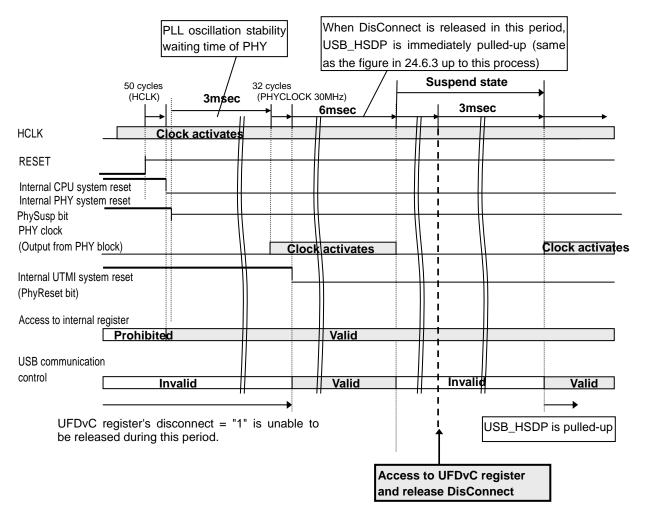


Figure 24-4 Timing for USB function controller to enter suspend state

When DisConnect is not released for 6ms or more after reset is released by the same sequence as "24.6.3", this macro shifts to suspend state and stops PHY clock. If DisConnect is released after the process, USB_HSDP is not immediately connected. It is connected 3ms after the release for PHY clock to resume, then USB communication starts.

24.6.5. CpuBusWidth and CpuByteOder setting

Be sure not to change setting value for CpuBusWidth bit and CpuByteOder bit of the UFCpAC register to other values than the initial value.

- CpuBusWidth = 2'b10 (32 bit mode)
- CpuByteOder = 1'b0 (little mode)

24.6.6. CpuByteOder setting value and USB transfer byte order

Slave and master transfer become as follows by the CpuByteOder setting.

32 bit mode and little mode
 Little
 31 24 23 16 15 8 7 0
 Byte 3 Byte 2 Byte 1 Byte 0
 transfer order

24.6.7. Access method to Function Link ENDPOINT buffer (slave interface)

32 bit mode and little mode

Writing operation

Writing is proceeded in 32 bit. When fraction byte to 32 bit (4 Byte) is needed, its process should be carried out at the last of 1 packet.

Operation varies depending on transfer volume of 1 packet.

1. Writing amount is 4 byte × n (n: integer)

a)	32	bit	writing	for	n	time(s)
•••	~	~ ~		101	**	

No. of	F_HADDRS[1:0]	F_HSIZES[2:0]	F_HWDATAS				
writing F_HADDKS[1:0]		F_H512E5[2.0]	[31:24]	[23:16]	[15:8]	[7:0]	
Ν	00	010	Data (4n-0)	Data (4n-1)	Data (4n-2)	Data (4n-3)	

2. Writing amount 4 byte × n + 1 byte (n: integer)

a) 32bit writing for n time(s) + 1 byte writing at the end

No. of	F HADDRS[1:0] F HSIZES[2:0]		F_HWDATAS				
writing		F_H512E5[2.0]	[31:24]	[23:16]	[15:8]	[7:0]	
n	00	010	Data (4n-0)	Data (4n-1)	Data (4n-2)	Data (4n-3)	
n+1	00	000	-	-	-	Data (4n+1)	

3. Writing amount is 4 byte \times n + 1 byte (n: integer)

a) 32bit writing for n time(s) + 2 byte writing for once at the end

No. of	F HADDRS[1:0] F HSIZES[2:0]		F_HWDATAS				
writing		r_nsizes[2.0]	[31:24]	[23:16]	[15:8]	[7:0]	
Ν	00	010	Data (4n-0)	Data (4n-1)	Data (4n-2)	Data (4n-3)	
n+1	00	001	-	-	Data (4n+2)	Data (4n+1)	

b) 32 bit writing for n time(s) + 1 byte writing for twice at the end

No. of	F_HADDRS[1:0] F_HSIZES[2:0]		F_HWDATAS				
writing	r_IIADDR5[1.0]	F_H512E5[2.0]	[31:24]	[23:16]	[15:8]	[7:0]	
n	00	010	Data (4n-0)	Data (4n-1)	Data (4n-2)	Data (4n-3)	
n+1	00	000	-	-	-	Data (4n+1)	
n+2	01	000	-	-	Data (4n+2)	-	

4. Writing amount is 4 byte \times n + 3 byte (n: integer)

No. of	F HADDRS[1:0]	F_HWDATAS				
writing	F_HADDK5[1:0]	F_HSIZES[2:0]	[31:24]	[23:16]	[15:8]	[7:0]
Ν	00	010	Data (4n-0)	Data (4n-1)	Data (4n-2)	Data (4n-3)
n+1	00	000	-	-	-	Data (4n+1)
n+2	01	000	-	-	Data (4n+2)	-
n+3	10	000	-	Data (4n+3)	-	-

a) 32 bit writing for n time(s) + 1 byte writing for 3 times at the end

b) 32 bit writing for n	time(s) + 2 byte wr	iting for once + 1 byte	writing for once at the end
b) c = bic withing for in			withing for once at the end

No. of	F HADDRS[1:0]	F HSIZES[2:0]	F_HWDATAS				
writing	r_IIADDR5[1.0]	F_H512E5[2.0]	[31:24]	[23:16]	[15:8]	[7:0]	
n	00	010	Data (4n-0)	Data (4n-1)	Data (4n-2)	Data (4n-3)	
n+1	00	001	-	-	Data (4n+2)	Data (4n+1)	
n+2	01	000	-	Data (4n+3)	-	-	

Reading operation

Reading is proceeded in 32 bit. Fraction byte to 32 bit needs judgment by software from the read of reception data volume register.

24.6.8. Function Link data transfer flow

24.6.8.1. SETUP stage in Control transfer (standard command)

Most of the case for standard command from HOST, protocol engine performs all processes automatically to eliminate CPU load on the device side. CPU on the device side does not need any process; moreover, reception of these commands is not notified to the CPU (*). Standard command for auto. process is as follows.

CLEAR_FEATURE / GET_CONFIGURATION / GET_INTERFACE / GET_STATUS / SET_ADDRESS / SET_CONFIGURATION / SET_FEATURE / SET_INTERFACE

(*) When SET_CONFIGURATION/SET_INTERFACE is received, IntSetConf and IntAchg occur.

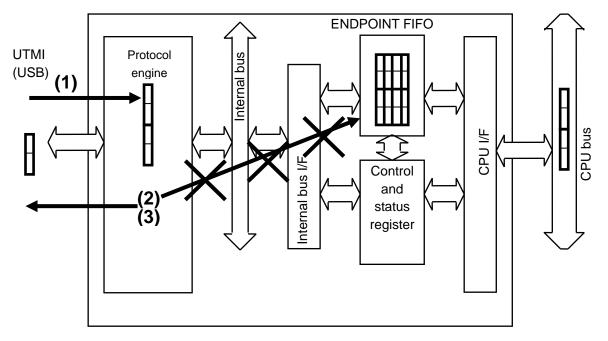


Figure 24-5 SETUP stage in control transfer (standard command process)

- (1) Setup state is received from PHY I/F.
- (2) Its command is analyzed by protocol engine. When setup to own device is correct and the command is for auto. process, writing to ENDPOINT buffer is not proceeded, nor status report/interrupt occurrence to register.
- (3) When setup to own device is correct, protocol engine transfers ACK handshake from PHY interface. If the setup is not for own device or error is found, the transfer is not carried out (TimeOut.)

24.6.8.2. SETUP stage in Control transfer (class command, vender command, and a part of standard command (GET_DESCRIPTOR/SET_DESCRIPTOR/SYNCH_FRAME))

Class command, vender command, and a part of standard command (GET_DESCRIPTOR / SET_DESCRIPTOR / SYNCH_FRAME) from host are written to ENDPOINT0 OUT transfer buffer.

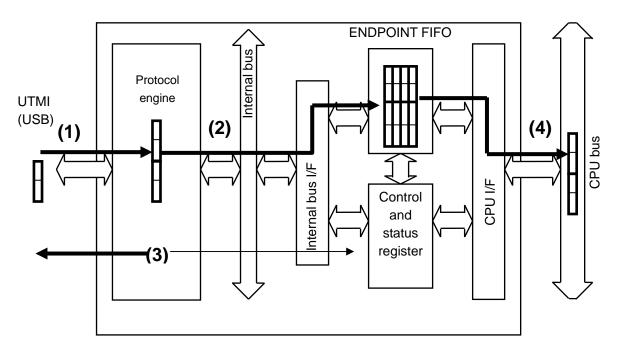


Figure 24-6 SETUP stage in control transfer (class command, vender command, and a part of standard command processes)

- (1) Setup state is received from PHY I/F.
- (2) Its command is analyzed by protocol engine. When setup to own device is correct and the command is not for auto. process, the data in setup stage process is written to ENDPOINT00 buffer.
- (3) When setup to own device is correct, protocol engine transfers ACK handshake from PHY interface. If the setup is not for own device or error is found, the transfer is not carried out (TimeOut.) At the time setup stage is received properly, following status report and display become valid by the report from protocol engine.
 - IntReady0o :Set to "1"
 - Ready0o :Set to "1"
 - RxSize00 :Valid value
 - IntSetup :Set to "1"
- (4) Data reading becomes valid by CPU interface (setting such as "1" writing to Ready0o for the next transfer may be required according to need.)

24.6.8.3. STATUS stage in Control transfer (standard command)

Standard command (shown below) except GET_DESCRIPTOR/SET_DESCRIPTOR/SYNCH_FRAME is all processed by protocol engine, and status register in the device does not change. Moreover interrupt signal is not asserted.

CLEAR_FEATURE / GET_CONFIGURATION / GET_INTERFACE / GET_STATUS / SET_ADDRESS / SET_CONFIGURATION / SET_FEATURE / SET_INTERFACE

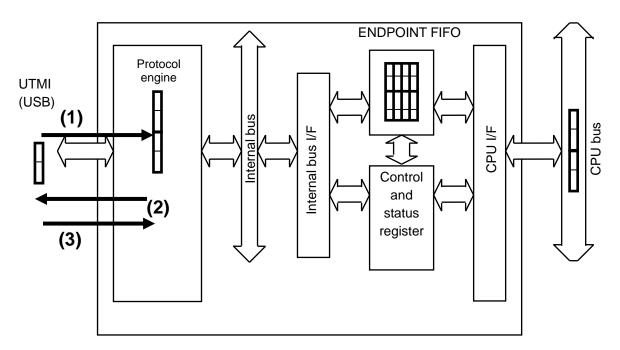


Figure 24-7 STATUS stage in control transfer (standard command process)

Control writing

- (1) IN token is received from PHY I/F.
- (2) When IN token to own device is correct as a result of its analysis by protocol engine, 0 byte data is sent to PHY I/F. If the token is incorrect, process becomes TimeOut.
- (3) ACK handshake is received from host.

Control reading

- (1) OUT token and 0 byte data are received from PHY I/F.
- (2) When the transfer to own device is correct as a result of their analysis by protocol engine, ACK handshake is sent to PHY I/F.

FUĴITSU

24.6.8.4. STATUS stage in Control transfer (class command, vender command, and a part of standard command (GET_DESCRIPTOR/SET_DESCRIPTOR/SYNCH_FRAME))

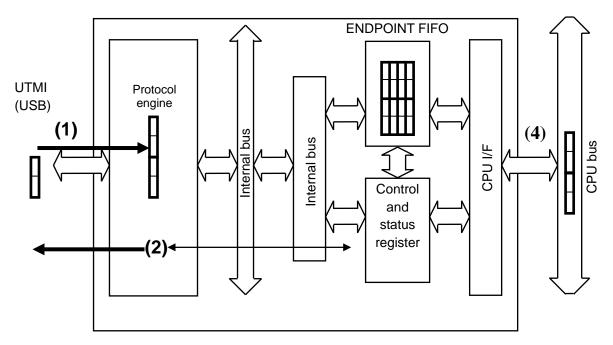


Figure 24-8 STATUS stage in control transfer (class command, vender command, and a part of standard command processes)

Control writing

- (1) IN token is received from PHY I/F.
- (2) When IN token to own device is correct as a result of its analysis by protocol engine, it proceeds followings according to UFEpC0 and UFEpS0 registers setting.
 - 1) Stall = "1"
 - Stall is sent to PHY I/F.
 - 2) Ready0i = "0" (Data is not written, but "1" needs to be written to Ready0i)
 - 0 byte data is sent to PHY I/F, then IntReady0i is set to "1" when Ready0i is set to "1".
 - 3) Ready0i = "1"
 - Nack is sent to PHY I/F.
- (3) In the case of item 2 of (2), ACK handshake is received from host (setting such as writing "1" to Ready0i for the next transfer is required according to need.)

Control reading

- (1) OUT token and 0 byte data are received from PHY I/F.
- (2) When the transfer to own device is correct as a result of their analysis by protocol engine, it proceeds followings according to UFEpC0 and UFEpS0 registers setting.
 - 1) Stall = "1"

Stall is sent to PHY I/F.

2) Ready0o = "0"

0 byte data is received from PHY I/F, and ACK is sent to the I/F. Then IntReady0o is set to "1" when Ready0o is set to "1". RxSize0o shows valid value is "0".

3) Ready0o = "1"

Nack is sent to PHY I/F (setting such as writing "1" to Ready0o for the next transfer is required according to need.)

24.6.8.5. Control (DATA stage)/Bulk OUT transfer

Transfer data is written to ENDPOINT OUT FIFO and read from CPU I/F. Reading from the I/F is also available for transfer to ENDPOINT with DMA interface.

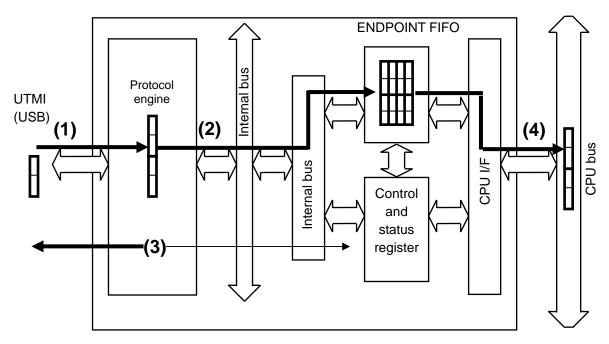


Figure 24-9 Control (DATA stage)/Bulk OUT transfer processes

- (1) OUT token and data reception start from PHY I/F.
- (2) When OUT token is analyzed by protocol engine, and it is correct ENDPOINT transfer to own device, reception ENDPOINT address is output to internal bus. Then output to the internal bus of the reception data starts.
- (3) Followings are processed with the setting of UFEpCX and UFEpSX registers (X = applied ENDPOINT BulkInterrupt) at the time of (2).

```
1) Stall = "1"
```

After data reception from PHY I/F, stall is sent to the I/F.

2) ReadyXo = "0" (Note)

Data is received from PHY I/F and written to ENDPOINT buffer in series.

3) ReadyXo = "1" (Note)

After data reception from PHY interface, Nack is sent to the I/F.

- Note) In the case of double buffer's ENDPOINT, step 2 and 3 may be different by 2 phases of buffer data's reception status even though ReadyXo = "1" of the data is able to be read.
 - When 2 phases are able to be received (ReadyXo = "0"), item 2 is proceeded. After the reception, ACK is sent to PHY I/F.
 - When 1 more phase is able to be received (ReadyXo = "1"), item 2 is proceeded. After the reception, NYET is sent to PHY I/F.
 - When 2 phases are already received (ReadyXo = "1"), item 3 is proceeded. After the reception, NACK is sent to PHY I/F.

(4) When data is received

- 1) When data is not normal, status of (3) becomes Timeout, not ACK/NYET/NACK. In this case, writing data to ENDPOINT buffer is deleted. Moreover, IntReadyXo and ReadyXo are not set to "1".
- 2) Although the data is normal, IntReadyXo is set to "1" when ReadyXo is set to "1" after data reception. Moreover, reception data volume is displayed as valid value so that Slave I/F is able to detect after the reception.

In addition, ENDPOINT with Master I/F is able to read data from the I/F after data reception.

- (Note) In the case of double buffer ENDPOINT, timing of setting "1" to IntReadyXo and ReadyXo as well as valid timing of RxSizeXo may change according to the reading status of the previously received data.
- (Note) Setting such as writing "1" to Ready0o for the next transfer is required according to need.

24.6.8.6. Control (DATA stage)/Bulk/Interrupt IN transfer

Writing data from Local Bus I/F to ENDPOINT IN transfer FIFO is forwarded to USB BUS protocol engine.

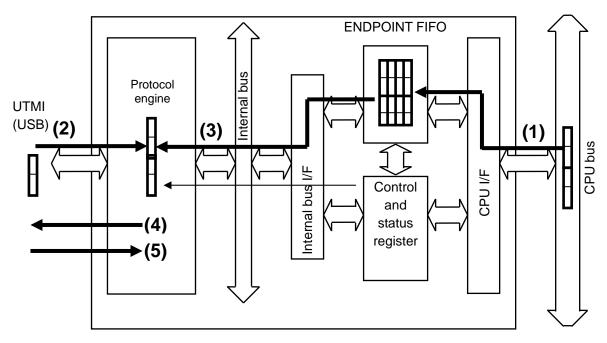


Figure 24-10 Control (DATA stage)/Bulk/Interrupt IN transfer processes

- (1) Before starting transmission data's IN transfer, write data to IN transfer ENDPOINT FIFO in writing operation from CPU I/F or DMA I/F.
- (2) IN token is received from PHY I/F.
- (3) When IN token is analyzed by protocol engine, and it is correct ENDPOINT transfer to own device, transmission ENDPOINT address is output to internal bus. Then output to the internal bus of the reception data starts.
- (4) Followings are processed with the setting of EpCX and EpSX registers (X = applied ENDPOINT BulkInterrupt) at the time of (3).
 - 1) Stall = "1"

Protocol engine sends Stall to PHY I/F.

- 2) ReadyXi = "0" (Note)
 - Protocol engine reads data from ENDPOINT buffer in series, then sends it to PHY I/F.
- 3) ReadyXi = "1" (Note)

Nack is sent to PHY I/F.

- (Note) In the case of double buffer ENDPOINT, process may change according to the transmission status of the 2 phase buffer data though ReadyXi = "1" of data is writable.
 - When 2 phases are sendable (ReadyXi = "0"), item 2 is proceeded. Then the data is sent to PHY I/F.
 - When 1 more phase is sendable (ReadyXi = "1"), item 2 is proceeded. Then the data is sent to PHY I/F.
 - When both 2 phases are already sent (ReadyXi = "1"), item 3 is proceeded. NACK is send to PHY I/F.

- (5) Followings should be processed according to reception status on USB Host side.
 - 1) Reception is processed properly on USB Host side
 - ACK is received by PHY I/F. After the reception, IntReadyXi is set to "1" when ReadyXi is set to "1" so that CPU I/F is able to detect the completion of the reception.
 - After the data transfer, DREQ is asserted in ENDPOINT with DMA I/F that data is able to be written from the interface.
 - 2) Reception is not processed properly on USB Host side

Protocol engine becomes TimeOut and it leads to judgment that transfer is invalid with TimeOut. Then reading pointer of transmission ENDPOINT buffer is returned to the state before the transmission, and the same data is used for the next IN transfer. In this case, IntReadyXi and ReadyXi are not set to "1".

24.6.9. Reception's basic operation (data reading by Slave I/F)

Basic operation of reception is as follows.

- 1. When reception data is already written to reception ENDPOINT (BulkInterrupt) and is readable, the data is read. Then completion of reading is instructed by writing "1" to ReadyXo (X = applied ENDPOINT BulkInterrupt.) This instruction also indicates permission of receiving the next packet.
- 2. When the next packet reception is permitted, data is received to applied ENDPOINT (BulkInterrupt) buffer unless OUT token from USB Host and the next data do not have error.
- 3. When reception is completed, IntReadyXo is set to "1"; at the same time, ReadyXo is set to "1". Moreover, RxSizeXo displays reception data volume as valid value.

The flow shows example of operation including reception process.

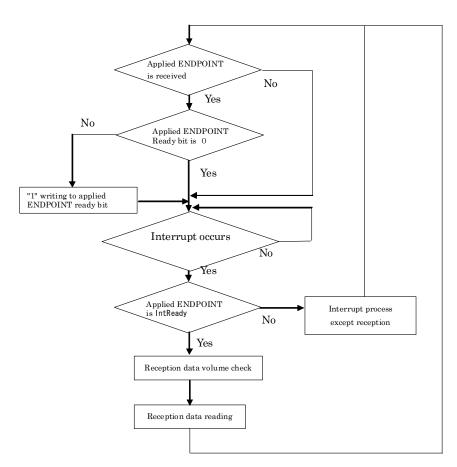


Figure 24-11 USB reception operation flow example

24.6.10. Reception operation and status

Relation of reception operation and IntReadyXo, ReadyXo, RxSizeXo is shown below.

Figure 24-12 Relation of reception operation, IntReadyXo, ReadyXo, and RxSizeXo

24.6.11. Basic transmission operation (data writing by the slave I/F)

Basic operation of transmission is as follows.

- 1. Write transmission data to transmission ENDPOINT (BulkInterrupt) buffer, if writable. Then write "1" to ReadyXi (X = applied ENDPOINT BulkInterrupt) and instruct completion of writing. This instruction also indicates transmission permission of the packet.
- 2. When the packet transmission is permitted, it is sent as the next data of IN token from USB Host.
- 3. When transmission ends without error, IntReadyXi is set to "1"; at the same time, ReadyXi is set to "1".

The flow shows example of operation including transmission process.

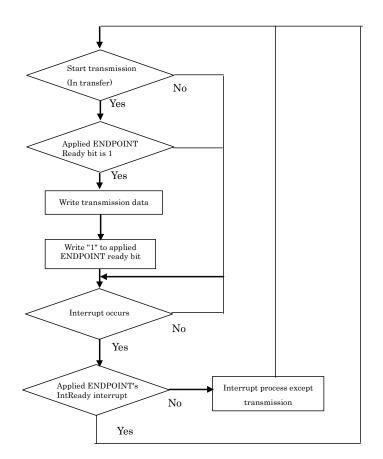


Figure 24-13 USB transfer operation flow example

24.6.12. Transmission operation and status

Relation of transmission operation and IntReadyXi and ReadyXi is shown below.



Figure 24-14 Relation of transfer operation, IntReadyXi, and ReadyXi

24.6.13. Notice of Control transfer process

Following should be noted to process Device Request (*) which does not respond automatically in the Control transfer.

- (*) SET_DESCRIPTOR/GET_DESCRIPTOR/SYNCH_FRAME, Class command, and Vendor command
- 1. End Point0o (EpOB0) is initialized at the beginning of Setup stage of the Control transfer, and 8 byte of Setup Stage data is written to UFEpOB0 after initialization.
- 2. When 8 byte of Setup stage data in the Control transfer is written to UFEpOB0, IntSetup bit is set and UFEpOB0 temporarily masks access from CPU. After IntSetup bit is cleared, IntReady00 is set and access from CPU is able to be performed properly.
- 3. The period of setting IntSetup bit is initialization period of End Point0i (UFEpIB0) that access from CPU is masked. After IntSetup bit is cleared, access from CPU is able to be performed properly. Clearing IntSetup bit enables writing to UFEpIB0; and IntReady0i is set as well.

USB SetUp-Token Data	Ack
UFEpOB0 contents	Setup stage Data
UFEpOB0 initialization signal (internal signal)	\square
IntSetup	
IntReady00	
	UFEpOB0 invalid data reading period
UFEpIB0 contents	Initial state
UFEpB initialization signal (internal signal)	
IntReady0i	
	UFEpiB0 writing invalid period

Figure 24-15 Process for Device Request which does not respond automatically in control transfer

This operation is to correspond to "when Setup is received before completing the previous Control transfer, it is deleted and the new setup should be proceeded" of USB standard 5.5.5 (such condition does not occur with proper USB Host.)

Always receive new setup data with this operation, and the data in IN direction buffer (EpIB0) is initialized which prevents sending response data to old Control transfer when IN transfer is requested after new setup. Since initialization state of Buffer (EpiB0) continues until IntSetup release, writing response data for old Control transfer is also prevented when Setup is received in Buffer (EpiB0) writing.

For that reason, delete previous transfer processes and response process should be carried out every time Setup is received when IntSetup interrupt occurs in Control transfer.

24.6.14. DMAC operation (data transfer by Master interface)

In this macro, DMAC (Master interface) is mounted to ENDPOINT Bulk1 and Bulk2 which are able to use DMAC by setting DMA (setting to register UFEpDC) and DMAC (register UFEpDCn/UFEpDAn/UFEpDSn) of Function Link.

DMA mode

Access to ENDPOINT buffer is able to process through Master interface signal pin. For Null packet transmission/reception, Slave interface should be used.

For DMAC mode, the next packet transmission/reception are able to proceed only by writing/reading necessary transfer volume from Function link DMAC register. Reading/Writing completion notice (Ready bit control) is not required. Slave interface is used for Null packet transmission/reception.

IN transfer

When packet is in writing process to ENDPOINT buffer, write "1" to DmaMode* after packet data writing is completed, then write "1" to Ready*i bit.

OUT transfer

When packet is in reading process from ENDPOINT buffer, write "1" to DmaMode* after packet data writing is completed, then write "1" to Ready*o bit.

Simultaneous access to the same ENDPOINT buffer from Slave I/F and Master I/F is prohibited.

	DMA mode (*1)	Normal mode
IN transfer Endpoint DmaReq[*] bit operation of UFEpDS register	Endpoint[*] bit outputs Ready*i bit value of UFEpS* register since Endpoint* setting is for IN transfer. Ready*i bit is asserted in configured state when data is writable to Endpoint*.	Same as on the left
OUT transfer Endpoint DmaReq[*] bit operation of UFEpDS register	DmaReq[*] bit outputs Ready*o bit value of UFEpS* register since Endpoint* setting is for OUT transfer. Ready*o bit is asserted in Configured state when data is readable from Endpoint*.	Same as on the left
IN transfer Endpoint Transfer request operation to DMAC	Transfer request to DMAC occurs when the state is configured and MskDmaReq[*] is "0" as well as data is writable to Endpoint* buffer.	Same as on the left
OUT transfer Endpoint Transfer request operation to DMAC	Transfer request to DMAC occurs when the state is configured and MskDmaReq[*] is "0" as well as data, except NullPacket is readable from Endpoint* buffer.	Same as on the left
OUT transfer Endpoint Reception notice operation of NullPacket	Reception is notified when NullPacket reception information is ready to be read to Endopoint* buffer in the condition that the state is configured and MskDmaReq[*] bit is "0". After the notice, DMAC clears the EndPoint buffer automatically.	Same as on the left
Ready bit control	Reception/Transmission of the next packet is able to proceed by reading/writing data from DMAC interface so that reading/writing notification (ready bit control) is not required. Do not process ready bit control in the DMAC mode.	Reading/Writing completion notice (Ready bit control) should be issued every time reading/writing a packet is completed, otherwise the next packet is not received/written.
IntReady bit operation	When writing/reading process becomes available, IntReady bit is asserted. It is cleared automatically by accessing to Endpoint buffer with Master I/F or Slave I/F. In order to control asserting C_INTR by asserting IntReady bit in DMAC transfer, set "1" to MskReady bit of UFEpC * register.	When writing/reading processes are enabled, IntReady bit is asserted. IntReady bit is cleared automatically by accessing to Endpoint buffer with Master I/F or Slave I/F.
Other Endpoint interrupt signal operation	When Set requirement is met, Endpoint interrupt signal bit is asserted.	Same as on the left

Table 24-4	DMA	mode and	l normal	mode
-------------------	-----	----------	----------	------

(*1) Refer 24.6.14.2, "DMA interface" for reading/writing operation of DMAC mode.

24.6.14.1. 2 modes in DMA mode

DMA operation in this macro has 2 modes.

1) Total transfer volume setting mode

This mode notifies interrupt when data reaches to the certain transfer volume with setting transfer volume of whole transaction (the amount of USB transfer by multiple packet is identified), and masks DMA request to end the process.

2) Normal mode

Unlike total transfer volume mode, this mode reads/writes data from DMA interface without setting transfer volume.

24.6.14.2. DMA interface

DMA interface operation is as follows.

1) Reception ENDPOINT (Bulk): DMA reading operation

Packet data volume is able to be confirmed by UFEpDS * register of DMAC.

a. Start of DMA reading operation

When packet reception is completed in the DMA mode, DMA request and number of byte are notified to DMAC. (If they are masked by MskDmaReq of Function Link register UFEpDC, they are not notified.)

b. DMA reading operation

When EpDE bit of applied DMAC's UFEpDC* register is "1" during DMA request is notified, transfer starts by Master I/F.

c. End of DMA reading operation

When 1 packet of data is read, DMA request to DMAC is cleared until reception of the next packet is completed. With completion of the next packet, reading by DMA starts again.

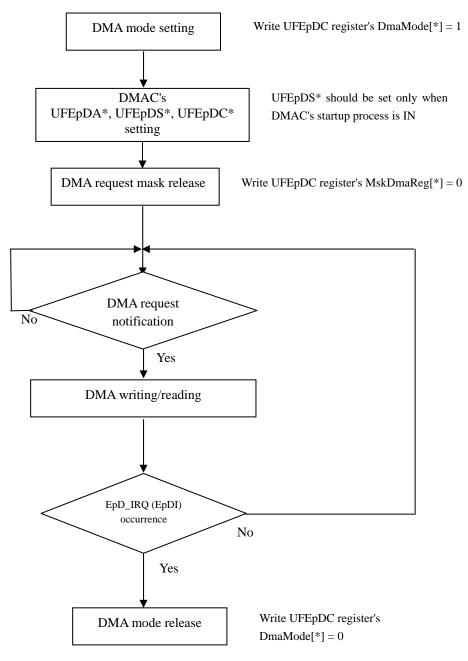
2) Transmission ENDPONT: DMA writing operation

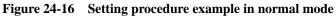
a. Start of DMA writing operation

When packet data writing is enabled in the DMA mode, applied DMA's request is notified (if it is masked by MskDmaReq of Function Link register UFEpDC, it is not notified.)

b. DMA writing operation

When EpDE bit of UFEpDC* register of DMAC is "1" while DMA request is notified with setting transfer size in the UFEpDS* register, transfer starts by Master I/F.


If transfer size set to the UFEpDS* register exceeds max. transfer volume of 1 packet, it is divided into multiple max. packet and the last ShortPacket.


c. End of DMA writing operation

When Master I/F receives the transfer size set to the UFEpDS* register, DMA transfer is ended.

24.6.15. DMA mode setting procedure

1) Setting procedure example for normal mode

2) Setting procedure example for total transfer volume mode

Out transfer

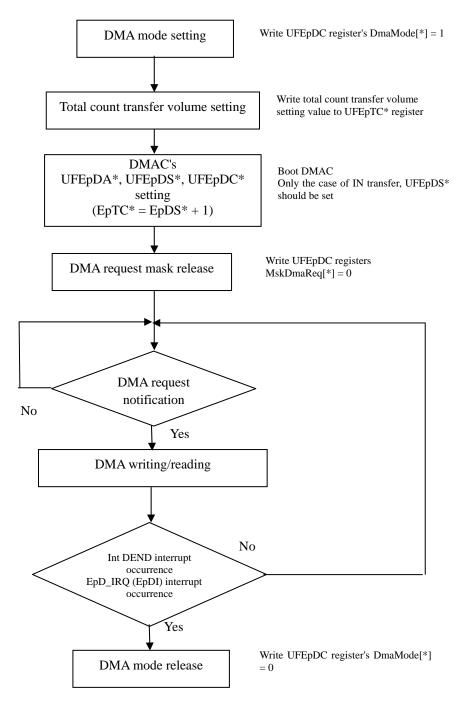


Figure 24-17 OUT transfer example (UFEpTC*=UFEpDS*+1 in IN transfer)

UFEpTC* > UFEpDS* + 1 in IN transfer

(MaxPacketSize x N - 1 at the first UFEpDS* setting) Write UFEpDC register's DMA mode setting DmaMode[*] = 1Write total count transfer volume Total count transfer volume setting setting value to UFEpTC* register DMAC's Boot DMAC UFEpDA*, UFEpDS*, UFEpDC* setting $(EpTC^* > EpDS^* + 1)$ Write UFEpDC register's DMA request mask release MskDmaReq[*] = 0DMA request notification No Yes DMA writing/reading No IntDEND interrupt occurrence Yes No EpD_IRQ (EpDI) Interrupt occurrence Yes UFEpTC* reading (check remaining transfer volume) DMAC's UFEpDA*, UFEpDS*, UFEpDC* setting $(EpTC^* = EpDS^* + 1)$ DMA mode release

Figure 24-18 OUT transfer example (for UFEpTC*>UFEpDS*+1 in IN transfer, MaxPacketSize×N-1 is set at the 1st UFEpDS* setting)

UFEpTC* < UFEpDS* + 1 in IN transfer (MaxPacketSize x N at the first UFEpDS * setting)

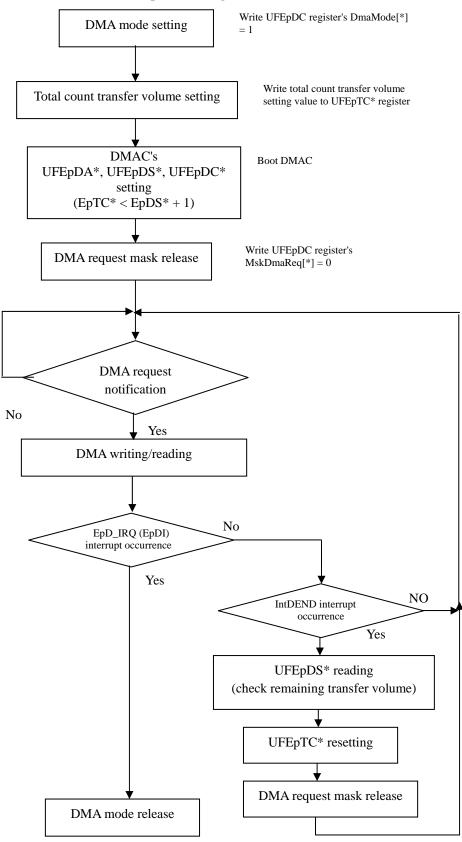


Figure 24-19 OUT transfer example (for UFEpTC*<UFEpDS*+1 in IN transfer, MaxPacketSize×N is set at the 1st UFEpDS* setting)

24.6.16. Null packet transmission/reception

Null packet transmission/reception method excluding in the Control transfer status stage is shown below. For the status stage, refer to "24.6.8.3" and "24.6.8.4".

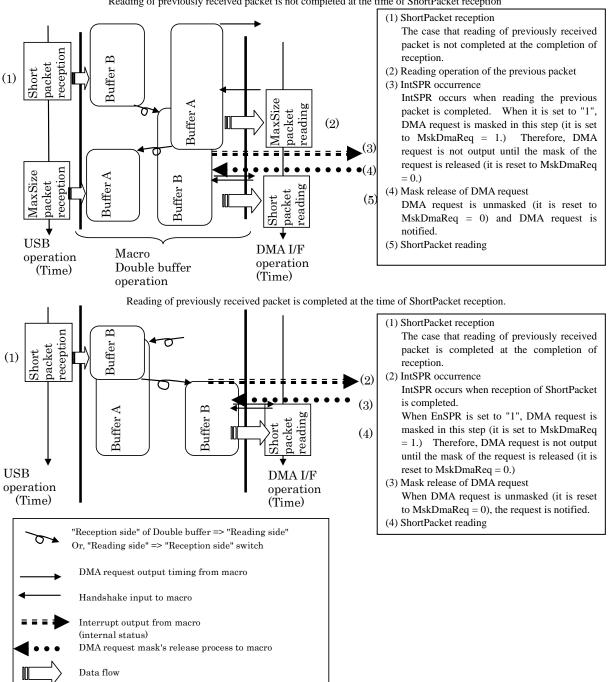
1) Null packet transmission (IN transfer)

Write "1" to Ready*i of corresponding ENDPOINT without writing data. Then IN transfer with "0" byte is permitted. Null packet is sent to IN token from the PHY interface.

2) Null packet reception (OUT transfer)

ENDPOINT without Master I/F

When Null packet is received, Ready is asserted and the number of reception byte shows "0" byte. Ready is cleared by writing "1".


ENDPOINT with Master I/F

When Null packet is received, Ready is asserted and it is notified to DMAC. Then DMAC sets EpNF of its UFEpDC*.

If EpNE is already set, interrupt occurs, and the Null packet information received in ENDPOINT buffer at the same time is automatically cleared.

24.6.17. SPR mode and SPDD mode

24.6.17.1. SPR mode

Reading of previously received packet is not completed at the time of ShortPacket reception

Figure 24-20 SPR mode operation

FUĴITSU

24.6.17.2. SPDD mode

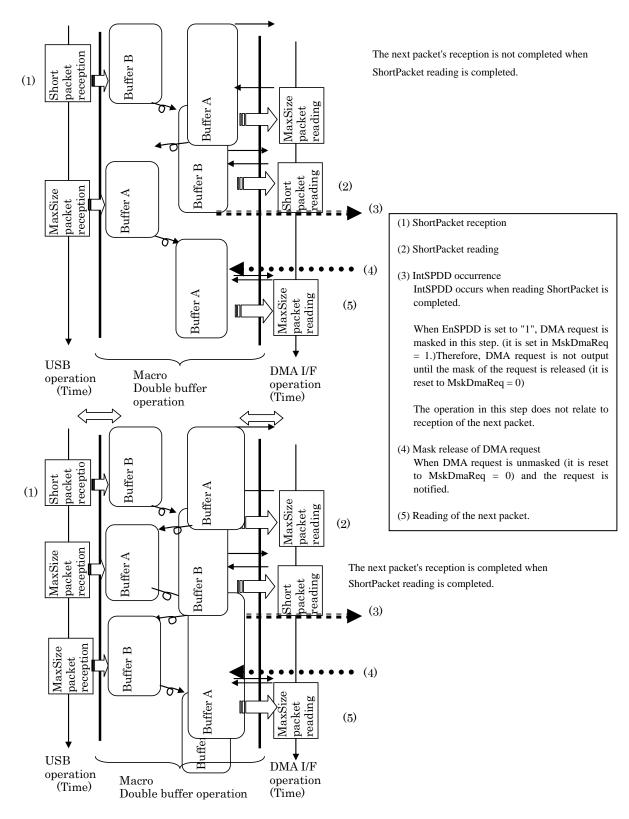
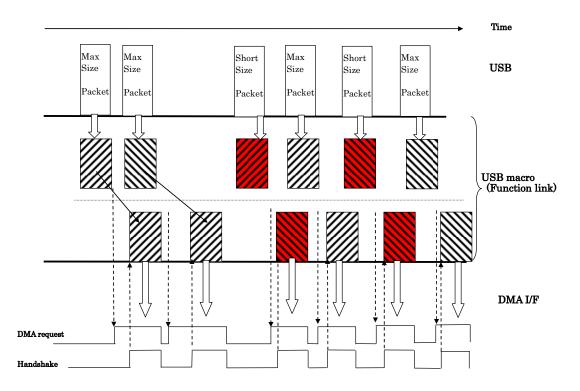
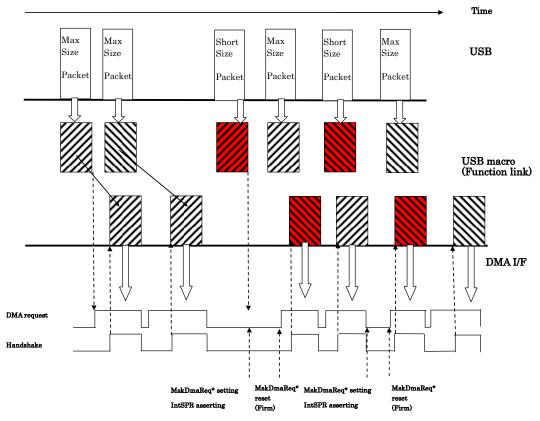
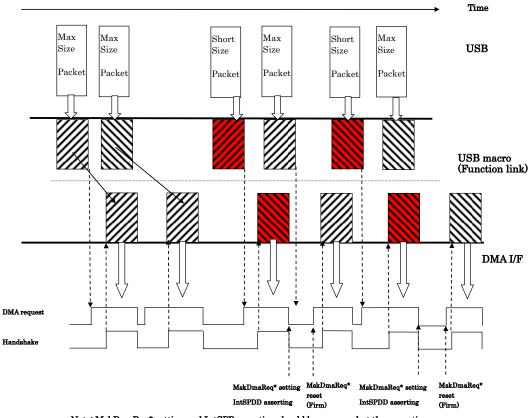



Figure 24-21 SPDD mode operation

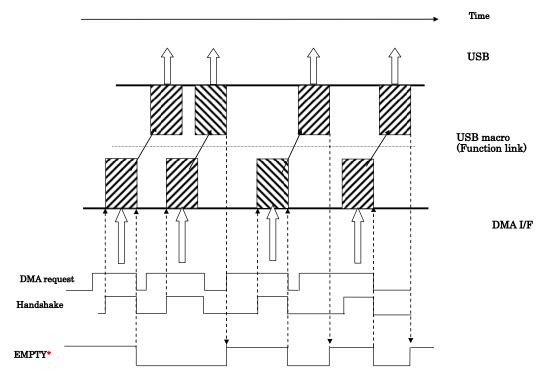

24.6.17.3. Mode and DMA interface timing

1) Normal mode (neither SPR nor SPDD mode)

Figure 24-22 DMA interface timing in Normal mode (neither SPR mode nor SPDD mode)


2) SPR mode

Note: MskDmaReq* setting and IntSPR asserting should be processed at the same time


Figure 24-23 DMA interface timing in SPR mode

3) SPDD mode

Note: MskDmaReq* setting and IntSPR asserting should be processed at the same time

Figure 24-24 DMA interface timing in SPDD mode

24.6.18. Operation timing of EMPTY* status bit

Figure 24-25 EMPTY* status bit's operation timing

24.6.19. Pull-Up resistor

Internal resistor

This macro contains Pull-Up resistance connected to D+ signal. When ExtRPU bit of the CustomCnt register is set to "0", internal Pull-Up resistor becomes valid and it is controlled by its control signal. Initial value of ExtRPU bit is "0". When it is set to "1", internal Pull-Up resistor becomes invalid.

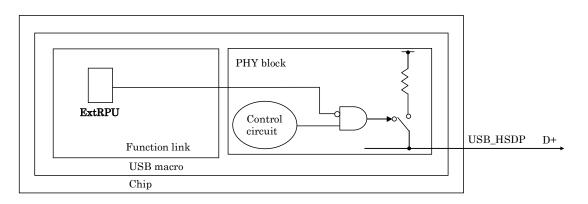


Figure 24-26 Internal Pull-Up resistor's control part for D+ signal

24.6.20. Analog power supply control and analogue power down control

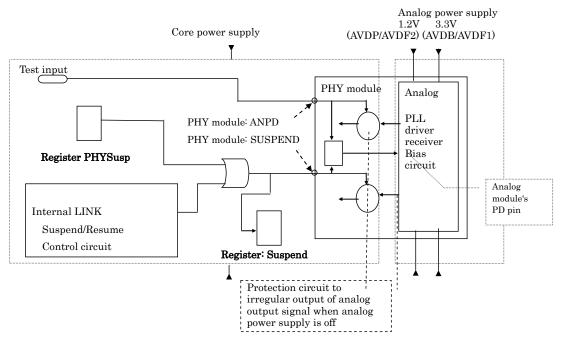


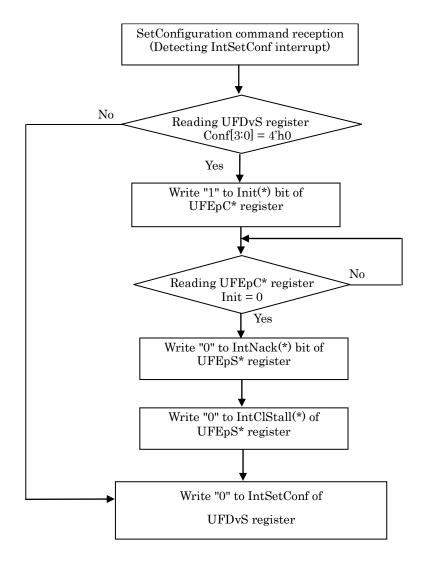
Figure 24-27 Analog power supply and analog power down control

Operation stop of analog module

PHY module's SUSPEND signal becomes active when state becomes SUSPEND in USB operation or register PHYSusp bit is set to "1".

When SUSPEND signal of PHY module becomes active, analog block shifts to power down mode and operation stops.

24.6.21. Control for when configuration setting value (wValue) receives "0" SetConfiguration command


When SetConfiguration command with "0" configuration setting value (wValue) is received and this macro's configuration setting value is changed from "1" to "0", Endpoint1~3 become invalid that reception/transmission are unable to be proceeded.

In this time, interrupt signal of Endpoint1~3 and DMA request are not cleared automatically so that they should be manually reset as shown below.

If they are not reset, interrupt signal and DMA request are continuously notified.

Since IntNack(*) and IntClStall(*) interrupt signals do not have clear condition which is by "1" writing in Init* bit, they should be cleared by writing "0".

Other statuses do not need to write "0" to clear since "1" writing to Int* bit clears them.

Figure 24-28 Operation flow at receiving "0" SetConfiguration command in Configuration setting value (wValue)

24.6.22. Total count transfer setting value and transfer volume setting value of external DMAC

When using total count transfer at IN transfer, correlation of transfer volume setting of total count (UFEpTC* register setting value) and DMAC (UFEpDS* register setting value) is as follows.

Table 24-5Relation of total count transfer volume setting value (UFEpTC* register setting value)and DMAC transfer setting value (UFEpDS* register setting value) (using total count transfer in INtransfer)

Transfer volume	Possible UFEpTC* setting	Possible UFEpDS* setting
UFEpTC* register setting value < UFEpDS* setting value + 1	MaxPacketSize × N Short can be set only at the end	Total transfer volume - 1
UFEpTC* register setting value = UFEpDS* setting value + 1	Total transfer volume	Total transfer volume - 1
UFEpTC* register setting value > UFEpDS* setting value + 1		MaxPacketSize × N - 1 Short can be set only at the end

When stopping transfer with setting different transfer volume between UFEpTC* and UFEpDS*, set register that transfer volume becomes integral multiple of MaxPacketSize in order to stop the transfer between packets.

Short packet is able to be transferred only at the last packet of all transfers.

24.6.23. Interrupt factor (except USB bus reset) phenomenon after USB bus reset

When bus reset is performed while Config value is "1", followings might occur.

- Interruption factor (except USB bus reset) occurs after USB bus reset
- Cause of the interrupt is IntEmpty of each EndPoint
- Interrupt is not output since interrupt is masked in BUS reset

In this case, proceed following processes:

Measures by software

Measures 1:

After bus reset's interrupt start signal (IntUsbRstB) is detected, write "0" to IntEmpty* signal of the UFEpS* ($* = 1 \sim 3$) register to clear.

Measures 2:

After bus reset's interrupt start signal (IntUsbRstB) is detected, write "1" to Init* bit of the UFEpC* (* = $1 \sim 3$) register.

25. IDE host controller (IDE66)

This chapter describes function and operation of IDE host controller (IDE66.)

25.1. Outline

IDE66 corresponds to ATA/ATAPI-5 and interfaces with IDE storage device such as hard disk and CD-ROM.

25.2. Feature

IDE66 has following features:

- Supporting primary IDE channel (based on IDE standard, up to 2 drives can be connected with 1 channel corresponding to master/slave)
- Supporting PIO mode (Mode 0 ~ 4)
- Supporting transfer with Ultra DMA mode (Mode $0 \sim 4$)
- IDE signal output timing change with register setting
- Direct access to IDE drive's register with program I/O access
- Auto. generating CRC at Ultra DMA transfer
- Max. 66MByte/sec. (Ultra DMA66) of transfer when AHB clock is 66MHz
- FIFO for Ultra DMA (transmission: 512 byte \times 2, reception: 512 byte \times 2)

Note:

Neither Singleword DMA nor Multiword DMA transfer mode of IDE is supported.

25.3. Block diagram

Figure 25-1 shows block diagram of IDE66.

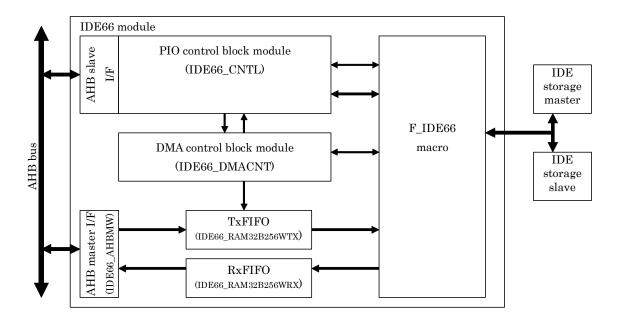


Figure 25-1 Block diagram of IDE66

Detail of internal block

IDE66_CNTL

This module has AHB slave I/F and controls PIO access to F_IDE66 macro.

IDE66_DMACNT

This module controls Ultra DMA transfer, AHB Master I/F control, and register group including DMA setting.

IDE66_AHBMW

This is general-purpose module that equips master function to access to AHB bus.

IDE66_RAM32B256WRX

This module is DMA data in burst (data reception) FIFO.

IDE66_RAM32B256WTX

This module is DMA data out burst (data transmission) FIFO.

F_IDE66

This module is controller macro which interfaces with IDE storage device.

25.4. Related pin

IDE interface uses following pins which are common with other functions. To use the pin, set $MPX_MODE_4[1:0] = 00$ to Pin MPX select register of Chip Control Module (CCNT) to select pin function on IDE side. In addition, this pin is for 3.3V, not 5V.

Pin	Direction	Qty.	Description
IDE_XDCS[1:0]	OUT	2	IDE chip select (CS0-, CS1-) output. Active low.
IDE_DA[2:0]	OUT	3	IDE device address (DA[2:0]) output
IDE_XDASP	IN	1	IDE device active (DASP-) input. Active low.
IDE_DD[15:0]	IN/OUT	16	IDE device data (DD[15:0]) input/output. Low order 8 bits become valid at register transfer, and all 16 bits become valid at data transfer.
IDE_XDIOR	OUT	1	IDE device I/O read (DIOR-) output. At Ultra DMA data in burst (HDMARDY-) and Ultra DMA data out burst (HSTROBE.)
IDE_XDIOW	OUT	1	IDE device I/O write (DIOW-) output. At Ultra DMA data burst (STOP.)
IDE_XDDMACK	OUT	1	IDE device DMA acknowledge (DMACK-) output. Active low.
IDE_DDMARQ	IN	1	IDE device DMA request (DMARQ) input.
IDE_DINTRQ	IN	1	IDE interrupt (INTRQ) input. DINTRQ is reflected to interrupt output signal of IDE interface unit as it is.
IDE_DIORDY	IN	1	IDE I/O channel ready (IORDY) input. At Ultra DMA data in burst (DSTROBE) and Ultra DMA data out burst (DDMARDY)
IDE_XCBLID	IN	1	IDE cable ID (CBLID-) input. Active low. It is used for IDE cable distinction (40 pin or 80 pin.)
IDE_XDRESET	OUT	1	IDE reset (RESET-) output. Active low. Reset is output to IDE interface unit as it is, and the pin is synchronized with unit clock and negated. Moreover, asserting and negating can be controlled by register setting (ICMR [6].)
IDE_CSEL	OUT	1	ICE cable select (CSEL) output.
IDE_XIOCS16	IN	1	IDE's 16 bit I/O (IOCS16-) input. Active low.

Table 25-1 IDE66 related pin

25.5. Supply clock

AHB clock is supplied to IDE interface unit. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

25.6. Register

This section describes IDE interface register.

25.6.1. Register list

IDE interface unit equips 1 channel and register shown in Table 25-2.

Access to the first 16 word (FFF20000h ~ FFF2001Ch and FFF20038h) is access to IDE drive register; therefore, status of these addresses is not maintained in the unit. The access from FFF20040h or later address should be the access to internal register.

For accessing to CS0/CS1 registers of other than CS0DAT register (FFF20000h), only low order 8 bits out of 32 bit in the internal register become valid; in addition, only low order 16 bits become valid for CS0DAT register in CS0 register. Refer to ATA/ATAPI-5 specifications for detail of each register, CS0 (command block register) and CS1 (control block register.)

Address	Register	Description
FFF20000h	CSODAT	CS0 data register
FFF20004h	CS0ER/CS0FT	CS0 error/features register
FFF20008h	CS0SC	CS0 sector count register
FFF2000Ch	CS0SN	CS0 sector number register
FFF20010h	CS0CL	CS0 cylinder low register
FFF20014h	CS0CH	CS0 cylinder high register
FFF20018h	CS0DH	CS0 device head register
FFF2001Ch	CS0ST/CS0CMD	CS0 status/command register
FFF20020h – FFF20037h	Reserved	Access prohibited
FFF20038h	CS1AS/CS1DC	CS1 alternate status/device control register
FFF2003Ch	Reserved	Access prohibited
FFF20040h	IDEDATA	DATA register
FFF20044h- FFF20047h	Reserved	Access prohibited
FFF20048h	IDEPTCR	PIO timing control register
FFF2004Ch	IDEPASR	PIO address setup register
FFF20050h	IDEICMR	IDE command register
FFF20054h	IDEISTR	IDE status register
FFF20058h	IDEINER	Interrupt enable register
FFF2005Ch	IDEINSR	Interrupt status register
FFF20060h	IDEFCMR	FIFO command register
FFF20064h	IDEFSTR	FIFO status register
FFF20068h	IDETFCR	Transmission FIFO count register
FFF2006Ch	Reserved	Access prohibited
FFF20070h	IDERFCR	Reception FIFO count register
FFF20074h – FFF200C7h	Reserved	Access prohibited
FFF200C8h	IDEUTCR	UDMA timing control register
FFF200CDh – FFF200CFh	Reserved	Access prohibited
FFF200D0h	IDEUCMR	UDMA command register

Table 25-2IDE66 register list

Address	Register	Description
FFF200D4h	IDEUSTR	UDMA status register
FFF200D8h – FFF2014Fh	Reserved	Access prohibited
FFF20150h	IDERRCC	RxFIFO rest count compare value
FFF20154h	IDEUTC1	Ultra DMA timing control 1
FFF20158h	IDEUTC2	Ultra DMA timing control 2
FFF2015Ch	IDEUTC3	Ultra DMA timing control 3
FFF20160h – FFF201FFh	Reserved	Access prohibited
FFF20200h	IDESTATUS	DMA status register
FFF20204h	IDEINT	Interrupt register
FFF20208h	IDEINTMSK	Interrupt mask register
FFF2020Ch	IDEPIOCTL	PIO access control register
FFF20210h	IDEDMACTL	DMA control register
FFF20214h	IDEDMATC	DMA transfer control register
FFF20218h	IDEDMASAD	DMA source address register
FFF2021Ch	IDEDMADAD	DMA destination address register

Description format of register

Following format is used for description of register's each bit in "25.6.2 CS0 data register (CS0DAT)" to "25.6.39 DMA destination address register (IDEDMADAD)".

Address							Bas	e addre	ess + 0	ffset						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

25.6.2. CS0 data register (CS0DAT)

_																
Address							FI	FF2_00	00 + 00	0h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				Data[15:8]							Data	[7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	х	Х	Х	х	Х	х	Х	Х	х	х	х	х	х	Х

This register is data port where low order 16 bits become valid.

Spec of IDE device connected to MB86R01 is applied to contents of this register (field configuration), therefore check IDE device spec. to be connected.

25.6.3. CS0 error register (CS0ER)

Address							FF	FF2_00	00 + 00	4h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Reserved)				WP	MC	IDNF	MCR	ABRT	NM	MED
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	х	х	х	х

Spec of IDE device connected to MB86R01 is applied to contents of this register (field configuration), therefore check IDE device spec. to be connected.

25.6.4. CS0 features register (CS0FT)

Address							FF	FF2 00	00 + 00)4h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)							Feat	tures			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	W	W	W	W	W	W	W	W
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	х	Х	х	х

Spec of IDE device connected to MB86R01 is applied to contents of this register (field configuration), therefore check IDE device spec. to be connected.

25.6.5. CS0 sector count register (CS0SC)

-																
Address							FI	FF2_00	00 + 00	8h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)							Sector C	ount[7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	Х	х	х	х

Spec of IDE device connected to MB86R01 is applied to contents of this register (field configuration), therefore check IDE device spec. to be connected.

25.6.6. CS0 sector number register (CS0SN)

Address							FF	F2_00	00 + 00	Ch						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)							Sector Nu	mber[7:0]		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	Х	х	х	х

Spec of IDE device connected to MB86R01 is applied to contents of this register (field configuration), therefore check IDE device spec. to be connected.

25.6.7. CS0 cylinder low register (CS0CL)

Address							FI	FF2_00	00 + 01	.0h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)							Cylinder	Low[7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	х	х	х	х

LBA bit 7 - 0 are indicated at LBA mode.

Spec of IDE device connected to MB86R01 is applied to contents of this register (field configuration), therefore check IDE device spec. to be connected.

25.6.8. CS0 cylinder high register (CS0CH)

Address							FF	FF2_00	00 + 01	.4h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)							Cylinder	High[7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	Х	Х	х	Х	Х	х	х	Х

LBA bit 15 - 8 are indicated in LBA mode.

Spec of IDE device connected to MB86R01 is applied to contents of this register (field configuration), therefore check IDE device spec. to be connected.

25.6.9. CS0 device/head register (CS0DH)

Address							FI	FF2_00	00 + 01	l8h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Res	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Reserved)				L	(Reserved)	DEV		Head	l[3:0]	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	х	х	х	х

Bit[3:0] indicates LBA bit 23 - 16 at LBA mode.

Spec of IDE device connected to MB86R01 is applied to contents of this register (field configuration), therefore check IDE device spec. to be connected.

25.6.10. CS0 status register (CS0ST)

Address							FF	F2_00	00 + 01	Ch						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				BSY	DRDY	DF	DSC	DRQ	(Rese	erved)	ERR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	х	х	х	х

Contents of this register (field configuration) is IDE device specification connected to MB86R01, therefore check IDE device spec. to be connected.

25.6.11. CS0 command register (CS0CMD)

A 11							TE		00.01	<u>CI</u>						
Address		-		-	-		FF	F2_00	00 + 01	Ch	-	-	-	-		
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)						(Command	Code[7:0]		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	W	W	W	W	W	W	W	W
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	х	х	х	х

Spec of IDE device connected to MB86R01 is applied to contents of this register (field configuration), therefore check IDE device spec. to be connected.

25.6.12. CS1 alternate status register (CS1AS)

Address							FF	FF2_00	00 + 03	88h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved)								BSY	DRDY	DF	DSC	DRQ	(Rese	erved)	ERR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	Х	Х	х	Х	Х	х	х	х

Spec of IDE device connected to MB86R01 is applied to contents of this register (field configuration), therefore check IDE device spec. to be connected.

25.6.13. CS1 device control register (CS1 DC)

Address							FF	FF2_00	00 + 03	88h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Reserved)						SRST	XIEN	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	W	W	W	W	W	W	W	W0
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	х	х	х	х

Spec of IDE device connected to MB86R01 is applied to contents of this register (field configuration), therefore check IDE device spec. to be connected.

25.6.14. Data register (IDEDAT)

Address							FI	FF2_00	00 + 04	0h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				Data[15:8]							Data	[7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	х	Х	Х	Х	Х	х	х	Х	х	х	Х	х	Х	х	х	х

DATA[15:0] is 16 bit access port to access to reception FIFO and transmission FIFO. Access during DMA transfer on host is invalid.

25.6.15. PIO timing control register (IDEPTCR)

Address							FF	FF2_00	00 + 04	8h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)					Active C	ount[3:0]		F	Recovery	Count[3:0]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit position	Field	Description
Bit 7:4		Access to IDE drive register and active time of IDE_XDIOR/IDE_XDIOW in PIO access are defined (definition of active time is low pulse width of DIOR/DIOW.)
	Count[3:0]	Access to IDE drive register and recovery time of IDE_XDIOR/IDE_XDIOW in PIO access are defined (definition of recovery time is holding time of the address data to rising edge of IDE_XDIOR/IDE_XDIOW.)

Please refer to "25.7.1 Active time and recovery time" for active time and recovery time setting since internal AHBCLK input frequency should be considered not to violate ATA spec. Refer to "25.7.2 Example setting of PIO mode register" for setting example.

25.6.16. PIO address setup register (IDEPASR)

Address							FF	F2_00	00 + 04	Ch						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Reserved)						Addı	ress Setup	[2:0]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	х	0	0	0

Bit position	Field	Description
Bit 2:0	Address Setup[2:0]	Address setup time of IDE_XDIOR/IDE_XDIOW in PIO access is defined (its definition is setup time of IDE_DA[2:0] and IDE_XDCS[1:0] to falling edge of IDE_XDIOR/IDE_XDIOW.) "000" – 8 clocks "001" – 1 clocks "010" – 2 clocks "010" – 2 clocks "101" – 3 clocks "100" – 4 clocks "100" – 6 clocks "111" – 7 clocks

Refer to "25.7.2 Example setting of PIO mode register" for setting example.

25.6.17. IDE command register

Address							FF	FF2_00	00 + 05	50h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				CSEL	DRESET	RST	(Reserved)	*1	*2	*3	*4
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	Х	х	0	0	0

*1: Interrupt Clear

*2: DMA Interface Direction

*3: DMA Interface Enable

*4: Interrupt Enable

Bit position	Field	Description
Bit 7	CSEL	IDE_CSEL at IDE access is defined. The setting status is reflected to IDE_CSEL pin as it is.
Bit 6	DRESET	IDE_XDRESET output is asserted by writing "1". "1": IDE_XDRESET is asserted ("L" is output) "0": IDE_XDRESET is negated ("H" is output)
Bit 5	RST	Internal macro is reset by writing "1". Applied range is all blocks except certain part in register and certain part of host interface in the block chart. "1": Internal reset is asserted "0": Internal reset is negated
Bit 4	(Reserved)	
Bit 3	Interrupt Clear	The interrupt occurred from internal IDE host controller unit is cleared by writing "1" at asserting interrupt, however, the interrupt caused by DINTRQ (interrupt input from IDE device) is not cleared.
Bit 2	DMA Interface Direction	Rewriting this bit during DMA transfer is invalid. "1": From host to transmission FIFO "0": From reception FIFO to host
Bit 1	DMA Interface Enable	 When DMA transmission is stop, the value of this bit becomes "0". In order to proceed DMA transfer again, "1" needs to be set again. Current bit value is indicated at reading. "1": Host side DMA interface is enabled Note: When Ultra DMA data in burst is used, do not write "0" to DMA interface enable bit. Transfer might not be proceeded properly.
Bit 0	Interrupt Enable	IDEINER register setting is validated. "1": IDE host controller's interrupt is enabled "0": Interrupt signal is disabled

25.6.18. IDE status register (IDEISTR)

-																
Address							FI	FF2_00	00 + 05	54h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Rese	erved)						XCBLID	XIOCS16	XDASP	INTRQ
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	Х	х	х	х

Bit position	Field	Description
Bit 7:4	(Reserved)	
Bit 3	XCBLID	Input value to IDE_XCBLID pin is read.
Bit 2	XIOCS16	Input value to IDE_XIOCS16 pin is read.
Bit 1	XDASP	Input value to IDE_XDASP pin is read.
Bit 0	INTRQ	Input value to IDE_DINTRQ pin is read.

25.6.19. Interrupt enable register (IDEINER)

Address		FFF2_0000 + 058h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							Decorried)						RxFIFO	TxFIFO	(Reserved)
Ivallie							Reserved)						Empty	Empty	(Reserveu)
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	х	0	0	х

Bit position	Field	Description
Bit 7:3	(Reserved)	
Bit 2	RxFIFO Empty	"1": The interrupt by having reception's FIFO full is enabled
Bit 1	TxFIFO Empty	"1": The interrupt by having transmission's FIFO empty is enabled
Bit 0	(Reserved)	

This register setting is valid only when Interrupt enable bit of IDEICMR register is "1"; moreover, interrupt output signal is cleared by writing "1" to Interrupt clear bit of the register.

25.6.20. Interrupt status register (IDEINSR)

Address		FFF2_0000 + 05Ch														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							Reserved)						RxFIFO	TxFIFO	INTRO
Ivaille						(Reserved)						Empty	Empty	INTRQ
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	х	0	0	х

Bit position	Field	Description
Bit 7:3	(Reserved)	
Bit 2	RxFIFO Empty	Interrupt occurs by having reception's FIFO become full.
Bit 1	TxFIFO Empty	Interrupt occurs by having transmission's FIFO become empty.
Bit 0	INTRQ	Input value to IDE_DINTRQ pin is read as it is.

25.6.21. FIFO command register (IDEFCMR)

Address	FFF2_0000 + 060h															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Dage	(horm						TxFIFO	RxFIFO	TxFIFO	RxFIFO
Name						(Rese	erved)						Clear	Clear	Enable	Enable
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	х	х	0	0

Bit position	Field	Description
Bit 7:4	(Reserved)	
Bit 3	TxFIFO Clear	"1": Transmission FIFO is cleared
Bit 2	RxFIFO Clear	"1": Reception FIFO is cleared
Bit 1	TxFIFO Enable	"1": Transmission FIFO is enabled
Bit 0	RxFIFO Enable	"1": Reception FIFO is enabled

To proceed Ultra DMA transfer, be sure to set "1" to bit 0 and bit 1.

25.6.22. FIFO status register (IDEFSTR)

Address		FFF2_0000 + 064h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Dage	(hour						TxFIFO	RxFIFO	TxFIFO	RxFIFO
Ivanie						(Rese	erved)						Full	Full	Empty	Empty
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	х	х	х	х	0	0	1	1

Bit position	Field	Description
Bit 7:4	(Reserved)	
Bit 3	TxFIFO Full	"1": Transmission FIFO is full
Bit 2	RxFIFO Full	"1": Reception FIFO is full
Bit 1	TxFIFO Empty	"1": Transmission FIFO is empty
Bit 0	RxFIFO Empty	"1": Reception FIFO is empty

25.6.23. Transmission FIFO count register (IDETFCR)

Address	FFF2_0000 + 068h															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)							XCN	T[7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit position	Field	Description
Bit 7:0	XCNT[7:0]	Status of transmission FIFO counter is indicated.

25.6.24. Reception FIFO count register (IDERFCR)

Address		FFF2_0000 + 070h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	rved)							RCN	Г[7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit position	Field	Description
Bit 7:0	RCNT[7:0]	Status of reception FIFO counter is indicated.

25.6.25. UDMA timing control register (IDEUTCR)

Address	FFF2_0000 + 0C8h															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	rved)					Active C	ount[3:0]		I	Recovery	Count[3:0]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit position	Field	Description
Bit 7:4		Active time of IDE_XDIOR (HSTROBE) in the Ultra DMA access is defined. Active time defines "1" width of IDE_XDIOR (HSTROBE) at UDMA transfer.
Bit 3:0		Recovery time of IDE_XDIOR (HSTROBE) in Ultra DMA access is defined. Recovery time defines "0" width of IDE_XDIOR (HSTROBE) at UDMA transfer.

Refer to "25.7.1 Active time and recovery time" for active time and recovery time, and "25.7.3 Example setting of Ultra DMA mode register" for setting example.

"0001" is not able to be set to both active count and recovery count, in addition rewriting this register during Ultra DMA transfer is invalid.

25.6.26. UDMA command register (IDEUCMR)

Address		FFF2_0000 + 0D0h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Rese	erved)						Pause or Term	UDMA Direction	UDMA Enable	(Reserved)
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit position	Field	Description
Bit 7:4	(Reserved)	
Bit 3	Pause or Term	Operation for when reception FIFO becomes full in ultra DMA data in burst, or transmission FIFO becomes empty in ultra DMA data out burst is defined as follows. "0": State shifts to pause phase "1": State shifts to termination phase
		 Note: When Ultra DMA data in burst is used, be sure to set "0" to "Pause or Term" bit (pause phase.) Setting "1" might not able to proceed transfer properly. When Ultra DMA data out burst is used, be sure to set "1" to "Pause or Term" bit (termination phase.) Setting "0" might not able to proceed transfer properly.
Bit 2	UDMA Direction	Direction of Ultra DMA transfer is defined. Rewriting this bit during the transfer is invalid. "0": Ultra DMA data in burst. "1": Ultra DMA data out burst
Bit 1	UDMA Enable	Ultra DMA transfer is enabled. Current bit value is indicated at reading. "1": Ultra DMA is enabled. Note: When Ultra DMA data in burst is used, do not write "0" to UDMA enable bit. Transfer might not be proceeded properly.
Bit 0	(Reserved)	

25.6.27. UDMA status register (IDEUSTR)

Address	FFF2_0000 + 0D4h															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															UDMA	UDMA
Name							(Rese	erved)							Dataout	Datain
															Burst	Burst
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R
Initial value	0	0	0	0	0	0	0	0	х	х	Х	Х	Х	Х	0	0

Bit position	Field	Description
Bit 7:2	(Reserved)	
Bit 1	UDMA Dataout Burst	"1": Ultra DMA data out burst is in process
Bit 0	UDMA Datain Burst	"1": Ultra DMA data in burst is in process

25.6.28. RxFIFO rest count compare value (IDERRCC)

Address							FF	FF2_00	00 + 15	50h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)							RRC	C[7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	1

Bit position	Field	Description
Bit 7:0	RRCC[7:0]	Comparison value of reception FIFO counter value

When reception FIFO counter value is matched to this register's at Ultra DMA data in transfer, the operation shifts to pause phase.

In the default value, it starts the pause operation when counter value of reception FIFO becomes 6 pieces to go.

Rewriting this register during Ultra DMA transfer is invalid.

Note:

This register is used for maintaining compatibility with various drives, not for register value change during normal operation.

25.6.29. Ultra DMA timing control 1 (IDEUTC1)

Address	FFF2_0000 +154h																
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name		(Reserved)															
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name				(Rese	erved)					TACI	K[3:0]			TEN	TENV[3:0]		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial value	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	

Bit position	Field	Description
Bit 7:4	TACK[3:0]	Setup and hold time for asserting/negating DMACK.
		• Mode0, 1, 2, 3, 4 (min. 20ns)
		• Initial value: 2 (cycle)
		• Adjustment range: 1 ~ 7 (cycle)
Bit 3:0	TENV[3:0]	 Envelope time. The time from IDE_XDDMACK (DMACK) to IDE_XDIOW (STOP) and XDIOR (HDMARDY) in data in burst initiation, and from IDE_XDDMACK (DMACK) to IDE_XDIOW (STOP) in data out burst initiation Mode0, 1, 2 (min. 20ns/max. 70ns) Mode3, 4 (min. 20ns/max. 55ns) Initial value: 2 (cycle) Adjustment range: 1 ~ 4 (cycle)

Rewriting this register during Ultra DMA transfer is invalid.

Note:

This register is used for maintaining compatibility with various drives, not for register value change during normal operation.

25.6.30. Ultra DMA timing control 2 (IDEUTC2)

Address		FFF2_0000 + 158h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)					TLI	[3:0]			TUI	[3:0]	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1

Bit position	Field	Description
Bit 7:4	TLI[3:0]	Interlock time (limitation on upper bound.)
		• Mode0, 1, 2 (min. 0ns/max. 150ns)
		• Mode3, 4 (min. 0ns/max. 100ns)
		• Initial value: 1 (cycle)
		• Adjustment range: 1 ~ 4 (cycle)
Bit 3:0	TUI[3:0]	Interlock time (no limitation on upper bound)
		• Mode0, 1, 2, 3, 4 (min 0ns)
		• Initial value: 1(cycle)
		• Adjustment range: 1 ~ 4 (cycle)

Rewriting this register during Ultra DMA transfer is invalid.

Note:

This register is used for maintaining compatibility with various drives, not for register value change during normal operation.

25.6.31. Ultra DMA timing control 3 (IDEUTC3)

Address		FFF2_0000 + 15Ch														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)					TSS	[3:0]			TML	I[3:0]	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0

Bit position	Field	Description
Bit 7:4	TSS[3:0]	Negating time of IDE_DDMARQ (DMARQ) or asserting time of IDE_XDIOW (STOP) from IDE_XDIOR (STROBE) edge
		• Mode0, 1, 2, 3, 4 (min. 50ns)
		• Initial value: 4 (cycle)
		• Adjustment range: 1 ~ 7 (cycle)
Bit 3:0	TMLI[3:0]	Interlock time (lower bound)
		• Mode0, 1, 2, 3, 4 (min. 20ns)
		• Initial value: 2 (cycle)
		• Adjustment range: 1 ~ 4 (cycle)

Rewriting this register during Ultra DMA transfer is invalid.

Note:

This register is used for maintaining compatibility with various drives, not for register value change during normal operation.

25.6.32. DMA status register (IDESTATUS)

Address	FFF2_0000 + 200h															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							(Reserved)							DMABSY
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit position	Field	Description
Bit 7:1	(Reserved)	
Bit 0	DMABSY	This bit displays "1" when IDE I/F is in DMA transfer. Since this bit shows status, "0" is displayed when IDE I/F is not accessed though DMA is active (DMA Start = "1".) This bit is able to perform only reading so that the value is not changed even writing is proceeded.
		0 (initial value)DMA transfer is stop1DMA transfer is in process

25.6.33. Interrupt register (IDEINT)

Address		FFF2_0000 + 204h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						(Reserved)						Drive Access Error	AHBMW Error	DMA End
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit position	Field	Description
Bit 7:3	(Reserved)	
Bit 2	Drive Access Error	This bit displays "1" when IDE drive is accessed (CS0 and CS1) from AHB slave I/F at DMA transfer (STATUS.DMABUSY = "1".) Writing "0" to this bit clears INT information to "0". When bit 2 is set to Mask ("1"), o_IDE66_IRQ is masked but not this bit. 0 (initial value) No interrupt 1 Interrupt
Bit 1	AHBMW Error	When response error occurs at accessing to AHB I/F master during DMA transfer, "1" is written. Writing "0" to this bit clears INT information to "0". When bit 1 of Interrupt mask register is set to Mask ("1"), o_IDE66_IRQ is masked but not this bit. 0 (initial value) No interrupt 1 Interrupt
Bit 0	DMA End	When data transfer of which number of data transfer is set to DTC and SC is completed, "1" is written. Writing "0" to this bit clears INT information to "0". When bit 0 of Interrupt mask register is set to Mask ("1"), o_IDE66_IRQ is masked but not this bit. 0 (initial value) No interrupt 1 Interrupt

25.6.34. Interrupt mask register (IDEINTMSK)

Address	FFF2_0000 + 208h															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		(Reserved)											(Reserved)	Drive Access Error Mask	AHBMW Error Mask	DMA End Mask
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1

Bit position	Field	Description
Bit 7:5	(Reserved)	
Bit 4	F_IDE66 Macro INT Mask	Mask of interrupt output (o_IDE66_INT) from F_IDE66 macro is released by writing "0" to this bit. 0 No interrupt mask 1(initial value) Interrupt mask
Bit 3	(Reserved)	
Bit 2	Drive Access Error Mask	Mask of interrupt output (o_IDE66_INT) caused by drive access error interrupt is released by writing "0" to this bit. Although the value of this bit is "1", bit 2 (drive access error) value of Interrupt register is not masked ("0" display.) 0 No interrupt mask 1(initial value) Interrupt mask
Bit 1	AHBMW Error Mask	Mask of interrupt output (o_IDE66_INT) caused by AHBMW error interrupt is released by writing "0" to this bit. Although the value of this bit is "1", bit 1 (AHBMW error) value of Interrupt register is not masked ("0" display.) 0 No interrupt mask 1(initial value) Interrupt mask
Bit 0	DMA End Mask	Mask of interrupt output (o_IDE66_INT) caused by DMA end interrupt is released by writing "0" to this bit. Although the value of this bit is "1", bit 0 (DMA end) value of Interrupt register is not masked ("0" display.) 0 No interrupt mask 1(initial value) Interrupt mask

25.6.35. PIO access control register (IDEPIOCTL)

Address	FFF2_0000 + 20Ch															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								Reserved)							PIO
Name								(Reserved)							Control
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit position	Field	Description
Bit 7:1	(Reserved)	
Bit 0		PIO access is performed to F_IDE66 macro by writing "1" to this bit when Ready from F_IDE66 macro is "0". However PIO access may not be performed properly when "1" is written to this bit. Normally, this bit is used with "0" as default.

25.6.36. DMA control register (IDEDMACTL)

Address	FFF2_0000 + 210h															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	DMA Start	(Reserved)														
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								Reserved)							TRANS Mode
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit position	Field	Description
Bit 31	DMA Start	This is start bit for DMA transfer which starts by writing "1" to this bit. Since the operation starts based on each DMA transfer setting value at "1" writing, the setting should be completed before "1" is written to this bit. After all data transfer is completed, this bit becomes "0". For the case of Ultra DMA data out burst, DMA transfer is able to stop by writing "0" to this bit, however the data at DMA transfer stop is not guaranteed. AHB master I/F stops the access after the transaction at DMA transfer stop is completed. IDE I/F stops the access when FIFO in F_IDE66 macro becomes empty (data out burst) or full (data in burst.) When writing "0" to this bit to end DMA transfer, "0" should be written to DMA enable in F_IDE66 macro to stop the transfer. (ICMR[1] = "0" and UCMR[1] = "0") 0 (initial value) DMA transfer stops 1 DMA transfer starts Note: When Ultra DMA data in burst is used, do not write "0" to DMA start bit. Transfer might not be proceeded properly.
Bit 30:1	(Reserved)	
Bit 0	TRANS Mode	This bit sets transfer mode for DMA transfer. When this bit is "0" (initial value), DMA transfer is performed in 512 byte unit. SC bit of DMA transfer control register becomes valid for number of DMA transfer setting. When "1" is written to this bit, transfer is performed in 4 byte unit to the transfer for 512 byte or less. DTC bit of DMA transfer control register becomes valid for number of DMA transfer setting. 0 (initial value) 512 byte unit transfer 1 4 byte unit transfer

25.6.37. DMA transfer control register (IDEDMATC)

Address		FFF2_0000 + 214h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)						DTC[8:0]									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R
Initial value	0	0	0	0	0	0	0	1	1	1	1	1	1	1	()
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				SC[7:0]			(Reserved) DIV[1:0]					INCR	r	ГYPE[2:0]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bit 24:16	(Reserved) DTC[8:0]										
	(DMA Data Transfer Count)	This bit sets number of byte for DMA transfer (9' h000 in the case of 4 byte.) This bit becomes valid at bit 0 = "1" of DMA control register. Since AHB I/F burst transfer is performed with 32 bit (4 byte) data width, [17:16] is fixed to 0. 4 byte transfer is performed by all "0", and it is able to be set from 4 to 512 byte in 4 byte unit. When this bit is read, number of remaining transfer byte is indicated (remaining amount - 1 is displayed.)									
	SC[7:0] (Sector Count)	This bit sets number of sector for transferring to consecutive sector. This bit becomes valid at bit 0 = "0" of DMA control register. Set the same value as CS0 sector count - 1 (8'h00 in the case of 1 sector.) Data transfer for 512 byte × SC setting value is performed. When this bit is read, number of remaining transfer sector is indicated (remaining amount - 1 is displayed.) During Ultra DMA transfer, rewriting this register is invalid									
Bit 7:6	(Reserved)										
	DIV[1:0] (Division of Increment Burst)	When type bit setting is undefined length of increment type burst ("001"), this bit performs the burst by dividing number of transfer set with DTC bit into 64 and 32 burst regarding max. number of transfer as 512byte.									
		00:	No division perform DTC reg				ined length increment type burst is med for the number of transfer byte set with regarding max. value as 512 byte. Inst at 512 byte transfer.				
		01:	64	4 Burst			\times 2 at 512 byte transfer				
		10:		2 Burst			\times 4 at 512 byte transfer				
		11: Unused (No division)									
	INCR (DMA Transfer Address Increment)		SAR	and DMAI			address for number of transfer or to repeatedly esses after each burst transfer to AHB I/F and				
	increment)	0 (initial va	lue)	Incremen (initial va		First address is incremented * At single transfer: Previous address + 0x4 At 16 burst: Previous address + 0x40					
		1		Fixed		A	Address is not incremented * At single transfer: Address is fixed				
Bit 2:0	ТҮРЕ										
	(DMA Transfer	000:	Si	ingle			Single transfer				
	Type)	001:		NCR (initial	value)		Undefined length increment type burst				
		01x II		NCR4			4 increment type burst				
		10x:		NCR8			8 increment type burst				
		11x:	11	NCR16			16 increment type burst				

25.6.38. DMA source address register (IDEDMASAD)

Address							FI	FF2_00	00 + 21	.8h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							Ι	OMA Sour	ce Addre	88						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							Ι	OMA Sour	ce Addre	55						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit position	Field	Description
Bit 31:0	Address	This register specifies source address on memory at DMA data out burst transfer. When memory is read by this module, it is performed in 32 bit unit so that low order 2 bits of source address is fixed to 2'b00. During Ultra DMA transfer, rewriting this register is invalid.

25.6.39. DMA destination address register (IDEDMADAD)

Address							FF	F2_00	00 + 21	Ch						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							DN	IA Destin	ation Add	ress						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							DN	IA Destin	ation Add	ress						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit position	Field	Description
Bit 31:0	Address	This register specifies address of transfer destination on memory at DMA data in burst transfer. When memory is written by this module, it is performed in 32 bit unit so that low order 2 bits of destination address is fixed to 2'b00. During Ultra DMA transfer, rewriting this register is invalid.

25.7. IDE operation

25.7.1. Active time and recovery time

Definition of active and recovery time of PIO timing control register (PTCR) and UDMA timing control register (UTCR) is as follows.

Active/Recovery count	R/W cycle time
0000	16 clocks
0001	1 clocks
0010	2 clocks
0011	3 clocks
0100	4 clocks
0101	5 clocks
0110	6 clocks
0111	7 clocks
1000	8 clocks
1001	9 clocks
1010	10 clocks
1011	11 clocks
1100	12 clocks
1101	13 clocks
1110	14 clocks
1111	15 clocks

Active and recovery time should be set in consideration of internal input frequency not to violate the ATA specification. The settable min. value in each transfer mode is indicated in "25.7.2 Example setting of PIO mode register" and "25.7.3 Example setting of Ultra DMA mode register".

25.7.2. Example setting of PIO mode register

Table 25-3 shows register value for setting min. time of PIO mode standard value.

Table 25-3	Example setting of PIO mode register (case of input internal frequency is 83.3MHz (12ns for
1 cycle))	

Mode(t0 standard value)	t1 standard value/PASR[2:0]	t2 standard value/PTCR[7:4]	t2i standard value/PTCR[3:0]
Mode4 (120ns)	Min. 25ns/"011"	Min. 70ns/"0110"	Min. 25ns/"0100"
Mode3 (180ns)	Min. 30ns/"011"	Min. 80ns/"1000"	Min. 70ns/"0111"
Mode2 (240ns)	Min. 30ns/"011"	Min. 100ns/"1010"	"1010"
Mode1 (383ns)	Min.50ns/"101"	Min. 125ns/"0000"	"0000"
Mode0 (600ns)	Min. 70ns/"110"	Min. 165ns/"0000"	"0000"

The value setting less than the min. value shown the above to each mode is prohibited.

Register must be set with " $t0 \le t2 + t2i$ ".

Although t2i standard value for Mode2 or less is not defined, it should be set in compliance with the above definition.

E.g. PIO Mode2 is set when internal input is CLK83MHz

PASR[2:0] = "011" PTCR[7:4] = "1010" PTCR[3:0] = "1010" t2(12ns × 11) + t2i(12ns × 11) = 264ns

Note:

The contents described above are to meet min. time of the standard that it does not secure the operation. Perform connection evaluation with the drive to change register value to operate properly.

25.7.3. Example setting of Ultra DMA mode register

Table 25-4 shows register value for setting min. time of Ultra DMA mode standard value.

Table 25-4Setting example of Ultra DMA mode register (case of internal input frequency is83.3MHz (12ns for 1 cycle))

Mode (t2CYCTYP standard value)	tCYC standard value/UTCR[7:4] or UTCR[3:0]
Mode4 (60ns)	Min.25ns/"0011"
Mode3 (90ns)	Min. 39ns/"0100"
Mode2 (120ns)	Min. 54ns/"0101"
Mode1 (160ns)	Min.73ns/"0111"
Mode0 (240ns)	Min. 112ns/"1010"

Note:

The contents described above are to meet min. time of the standard that it does not secure the operation. Perform connection evaluation with the drive to change register value to operate properly.

25.8. Function

AHB slave I/F

When write access is performed from AHB I/F, o_sHREADY is disabled (low output) until writing to F_IDE66 macro is completed. When read access is performed from AHB I/F, o_sHREADY is disabled (low output) until read data output to AHB I/F is ready.

All transfer types and burst transfer can be accepted; however, burst transfer is handled the same as single access at importing to the module.

Since access to the storage device register during DMA transfer is prohibited, error interrupt is output if the register is accessed.

AHB master I/F

Burst transfer

Transfer type is able to be set with type register setting, and all types except wrapping burst can be transmitted.

During DMA transfer, AHB burst transfer with normal setting transfers DMA data by max. 512 byte of undefined length increment burst.

Undefined length increment burst's burst length is able to be changed with DIV register at undefined length increment burst setting.

1KB boundary transfer

When increment burst exceeding 1KB boundary is proceeded, only the transaction goes over 1KB boundary is converted to single transfer to access. For other transactions, the transfer type set to the register is used.

Program I/O access

Example setting of PIO mode register

When PIO access is performed with this module, PIO timing control register (PTCR) needs to be set in compliance with PIO mode standard value.

Storage device internal register access

Internal register of storage device is able to be accessed by CS0/1 register access.

Ultra DMA transfer

Ultra DMA transfer is able to be proceeded by setting transfer mode in DMA related register (0x0210 or later) and writing "1" to DMA start bit of DMA control register after F_IDE66 register's DMA transfer setup.

Transfer in byte unit

Ultra DMA transfer is performed to 512 bytes or less data access, and it is able to set up to 512 byte in 4 byte unit. This function becomes valid by setting DMACTL.DMA MODE bit to "1 ".

If remaining transfer is less than the number of transfer set to fixed length burst and the number of undefined burst set in DVI register, the remaining is transferred with undefined length burst.

Transfer in sector unit

In order to set number of transfer sector in SC (sector count) register, DMA transfer is proceeded in sector unit (512 byte) with having necessary data for the transfer by 512 byte \times 2 double buffer configuration.

This function becomes valid by setting DMACTL.DMA MODE bit = "0".

Interrupt factor

Interrupt output, o_IDE_IRQ is OR output caused by followings:

- Interrupt from IDE drive(DINTRQ)
- Interrupt factor in F_IDE66 (normally unused)
 - 1. FIFO status

Interrupt by having TxFIFO become empty Interrupt by having RxFIFO become full

- DMA related interrupt factor
 - 1. Completion of DMA transfer

Interrupt by having completed all DMA transfer

2. AHB master I/F error

Interrupt by detecting response error due to access of AHM master I/F

3. AHB slave I/F error

Interrupt by accessing to storage device register from AHB slave I/F during DMA transfer

The host detected the interrupt should confirm all of the above interrupt factors. Output of o_IDE_IRQ can mask output according to the interrupt mask register. (Refer to interrupt mask register.)

Interrupt clear

- IDE drive interrupt is cleared by either of the followings:
 - Device selects and reads status in BSY = "0"
 - Device selects and writes command in BSY = "0" and DRQ = "0"
 - Assert XDRESET
 - Set SRST bit to "1"
- Internal interrupt of F_IDE66 is cleared by writing "1" to Interrupt clear (ICMR[3]) of ICMR.
- DMA related interrupt is cleared by writing "0" to the bit showing each interrupt factor of interrupt register.

26. CCNT

This chapter describes function and operation of Chip Control Module (CCNT.)

26.1. Outline

Chip Control Module (hereafter called CCNT) performs pin multiplex control, software reset control, AXI interconnect control and others.

26.2. Feature

- Multiplex pin interface: Mode selection setting of pin multiplex groups 2 and 4
- Software reset interface: Issuing software reset to each module in the register
- External pin interface: Indicating signal level of the external pin in status
- AXI interconnect interface: Setting AXI wait and priority of bus right
- INT interface: Setting interrupt mask and interrupt information clear
- Byte swap interface: Setting byte swap of IDE66, SDMC, I2S, and USB 2.0 Host
- DDR2 controller interface: Reset control in DDR2 controller
- GPIO interface
- MediaLB interface: Switching read data output method of MediaLB's AHB
- USB 2.0 interface (host system): USB 2.0 Host controller's stop control This is asserted when high order system detects error in AHB system or others
- USB 2.0 interface (host EHCI power): This asserts signal when overcurrent is detected, and it disables port

26.3. Block diagram

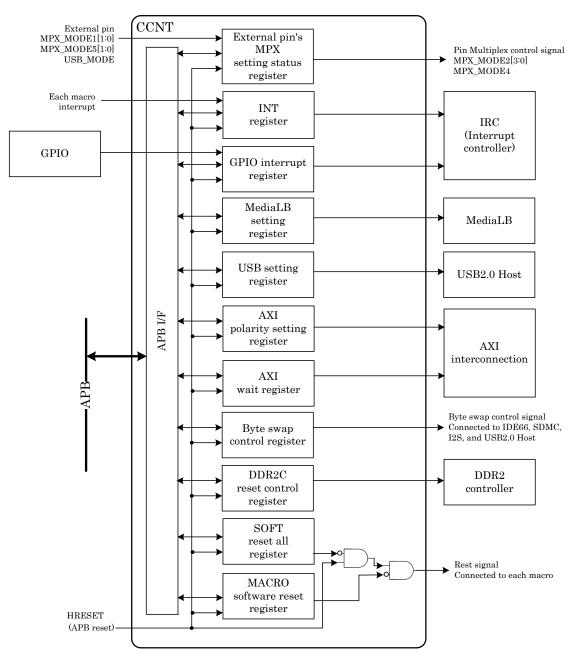


Figure 26-1 Block diagram of CCNT

26.4. Supply clock

AHB clock is supplied to CCNT. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

26.5. Register

This section describes CCNT module register.

26.5.1. Register list

CCNT unit contains register shown in Table 26-1.

Table 26-1 CCN1 register list					
Address	Register	Description			
FFF42000	CCID	Chip ID register			
FFF42004	CSRST	Software reset register			
FFF42008 – FFF4200F	Reserved	Access prohibited			
FFF42010	CIST	Interrupt status register			
FFF42014	CISTM	Interrupt status mask register			
FFF42018	CGPIO_IST	GPIO interrupt status register			
FFF4201C	CGPIO_ISTM	GPIO interrupt status mask register			
FFF42020	CGPIO_IP	GPIO interrupt polarity setting register			
FFF42024	CGPIO_IM	GPIO interrupt mode setting register			
FFF42028	CAXI_BW	AXI bus wait cycle setting register			
FFF4202C	CAXI_PS	AXI polarity setting register			
FFF42030	CMUX_MD	Multiplex mode setting register			
FFF42034	CEX_PIN_ST	External pin status register			
FFF42038	CMLB	MediaLB setting register			
FFF4203C	Reserved	Access prohibited			
FFF42040	CUSB	USB setting register			
FFF42044 - FFF420E7	Reserved	Access prohibited			
FFF420E8	CBSC	Byte swap switching register			
FFF420EC	CDCRC	DDR2 controller reset control register			
FFF420F0	CMSR0	Software reset register 0 for macro			
FFF420F4	CMSR1	Software reset register 1 for macro			

 Table 26-1
 CCNT register list

Description format of register

Following format is used for description of register's each bit in "26.5.2 CHIP ID register (CCID)" to "26.5.19 Software reset register 1 for macro (CMSR1)".

Address		Base address + Offset														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

26.5.2. CHIP ID register (CCID)

Address		FFF4_2000 + 00h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								YEAF	R[15:0]							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				CHIPNA	ME[7:0]							VERSI	ON[7:0]			
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0

	Bit field	Function
No.	Name	Function
31-16	YEAR[15:0]	Date of LSI development is indicated in 4 digit dominical year. In this LSI, 2006(h) is read.
15-8	CHIPNAME[7:0]	LSI identification name is indicated in ID number. In this LSI, 10(h) is read.
7-0	VERSION[7:0]	LSI version is indicated. In this LSI, 02(h) is read.

26.5.3. Software reset register (CSRST)

Address		FFF4_2000 + 04h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Res	erved)							
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								(Reserved)							SFTRST
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Function
No.	Name	Function
31-1	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".
0	SFTRST (Software reset)	Writing "1" to this bit outputs reset to macro (GDC, DDR2 controller, CAN, SDMC, MediaLB, I2S, SPI, IDE66, I2C, PWM, UART, USB, GPIO, and DMAC) in Chip. Since register value is output as it is (level output), "0" should be set again to release reset. 0 Not reset (initial value) 1 Reset

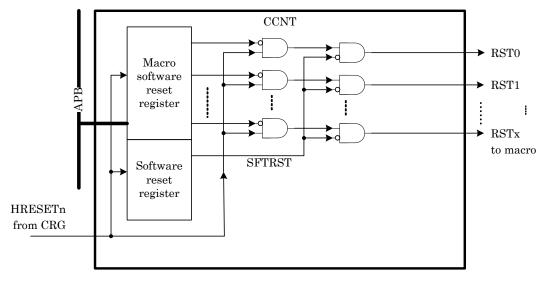


Figure 26-2 Details of software reset

26.5.4. Interrupt status register (CIST)

Address							FF	F4_200	00 + 10	h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	INT31	(Rese	erved)	INT28	INT27	INT26	(Reserved)	INT24				(Rese	erved)			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					(Re	served)					INT5		(Reserved)	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	
No.	Name	Function
31	INT31	When MediaLB DINT interrupt occurs, "1" is set. Writing "0" to this bit clears INT information to "0". When bit 31 of the Interrupt status mask register is set to mask "0", this bit is fixed to "0".
		0 No interrupt (initial value)
		1 Interrupt (MediaLB DINT)
30-29	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".
28	INT28	When HBUS2AXI error interrupt occurs, "1" is set. Writing "0" to this bit clears INT information to "0". When bit 28 of the Interrupt status mask register is set to mask "0", this bit is fixed to "0". 0 No interrupt (initial value) 1 Interrupt (HBUS2AXI)
27	INT27	When MBUS2AXI (Draw) error interrupt occurs, "1" is set. Writing "0" to this bit clears INT information to "0". When bit 27 of the Interrupt status mask register is set to mask "0", this bit is fixed to "0". 0 No interrupt (initial value)
		1 Interrupt (MBUS2AXI (Draw))
26	INT26	When MBUS2AXI (DispCap) error interrupt occurs, "1" is set. Writing "0" to this bit clears INT information to "0". When bit 26 of the Interrupt status mask register is set to mask "0", this bit is fixed to "0".
		0 No interrupt (initial value)
		1 Interrupt (MBUS2AXI (DispCap))
25	(Reserved)	Reserved bit. Initial value is $0_{\rm H}$. Setting other values than the initial value is prohibited.
24	INT24 (AHB2AXI)	When AHB2AXI error interrupt occurs, "1" is set. Writing "0" to this bit clears INT information to "0". When bit 24 of the Interrupt status mask register is set to mask "0", this bit is fixed to "0". 0 No interrupt (initial value) 1 Interrupt (AHB2AXI)
23-6	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".

FUJITSU

	Bit field	Function
No.	Name	Function
5	INT5	When MBUS2AXI (Cap) error interrupt occurs, "1" is set. Writing "0" to this bit clears INT information to "0". When bit 5 of the Interrupt status mask register is set to mask "0", this bit is fixed to "0".
		0 No interrupt (initial value)
		1 Interrupt (MBUS2AXI (Cap))
4-0	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".

26.5.5. Interrupt status mask register (CISTM)

Address							FF	FF4_20	00 + 14	h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	INT31 MASK	(Rese	rved)	INT28 MASK	INT27 MASK	INT26 MASK	(Reserved)	INT24 MASK	(Reserved)							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					(Re	served)					INT5 MASK	(Reserved)	INT1 MASK	INT0 MASK
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	
No.	Name	Function
31	INT31 Mask	Writing "1" to this bit validates MLB_DINT interrupt.
		0 Mask (initial value)
		1 INT31 is valid (MLB_DINT interrupt)
30-29	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".
28	INT28 Mask	Writing "1" to this bit validates HBUS2AXI interrupt.
		0 Mask (initial value)
		1 INT28 is valid (HBUS2AXI interrupt)
27	INT27 Mask	Writing "1" to this bit validates MBUS2AXI (Draw) interrupt.
		0 Mask (initial value)
		1 INT27 is valid (MBUS2AXI (Draw))
26	INT26 Mask	Writing "1" to this bit validates MBUS2AXI (Disp) interrupt.
		0 Mask (initial value)
		1 INT26 is valid (MBUS2AXI (Disp) interrupt)
25	(Reserved)	Reserved bit. Initial value is $0_{\rm H}$. Setting other values than the initial value is prohibited.
24	INT24 Mask	Writing "1" to this bit validates AHB2AXI interrupt.
		0 Mask (initial value)
		1 INT24 is valid (AHB2AXI interrupt)
23-6	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".
5	INT5 Mask	Writing "1" to this bit validates MBUS2AXI (Cap) interrupt.
		0 Mask (initial value)
		1 INT5 is valid (MBUS2AXI (Cap) interrupt)
4-2	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".

	Bit field	Function
No.	Name	Function
1	INT1 Mask	Writing "1" to this bit validates ADC ch1 interrupt.
		0 Mask (initial value)
		1 INT1 is valid (ADC ch1 interrupt)
0	INT0 Mask	Writing "1" to this bit validates ADC ch0 interrupt.
		0 Mask (initial value)
		1 INT0 is valid (ADC ch0 interrupt)

26.5.6. **GPIO** interrupt status register (CGPIO_IST)

Address		FFF4_2000 + 18h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				(Rese	erved)			GPIO_INT_status[23:16]								
R/W	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R/W0	R /W0	R /W0	R /W0	R /W0	R/W0	R /W0	R /W0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							G	PIO_INT	status[15	:0]						
R/W	R /W0	R /W0	R /W0	R /W0	R /W0	R /W0	R /W0	R /W0	R/W0	R /W0	R /W0	R /W0	R /W0	R/W0	R /W0	R /W0
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register is to indicate GPIO related interrupt status.

	Bit field	Function							
No.	Name	Function							
31-24	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".							
23-0		This is cleared by "0" writing. GPIO's applied bit indicates interrupt is occurred.							
		0 Interrupt is not occurred							
		1 Interrupt is occurred							

26.5.7. GPIO interrupt status mask register (CGPIO_ISTM)

This register is to control GPIO related interrupt which is judged by the setting status regardless of input/output. Each setting bit can be set corresponding to each bit one-by-one from MSB to LSB.

Address	FFF4_2000 + 1Ch															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved) GPIO_INT_enable[23:16]														
R/W	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							GI	PIO_INT_	enable[15	5:0]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

]	Bit field	Function								
No.	Name	Function								
31-24	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".								
23-0		Whether to generate interrupt with the value sampled external pin, GPIO23-0 in intern clock is set by bit.								
		0 Interrupt does not occur								
		1 Interrupt occurs based on the register setting shown from the next page								

26.5.8. GPIO interrupt polarity setting register (CGPIO_IP)

This register is to control GPIO related interrupt which is judged by the setting status regardless of input/output. Each setting bit can be set corresponding to each bit one-by-one from MSB to LSB.

Address		FFF4_2000 + 20h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved) GPIO_INT_polarity[23:16]														
R/W	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							GP	IO_INT_j	olarity[1	5:0]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Function							
No.	Name	Function							
31-24	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".							
23-0	GPIO_INT_polarity (GPIO interrupt	Interrupt occurs with the following value.							
	polarity)	0 Level "0" or negative edge is detected (GPIO_INT_mode dependant)							
		1 Level "1" or positive edge is detected (GPIO_INT_mode dependant)							

26.5.9. **GPIO** interrupt mode setting register (CGPIO_IM)

This register is to control GPIO related interrupt which is judged by the setting status regardless of input/output. Each setting bit can be set corresponding to each bit one-by-one from MSB to LSB.

Address	FFF4_2000 + 24h															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved) GPIO_INT_mode[23:16]														
R/W	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R0/W0	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							G	PIO_INT_	_mode[15	:0]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Function							
No.	Name	Function							
31-24	()	Reserved bit. Write access is ignored. Read value of these bits is always "0".							
	GPIO_INT_polarity (GPIO interrupt polarity)	GPIO_INT_mode (GPIO interrupt mode) 0 Level sensitive ("0" or "1" is GPIO_INT_polarity dependant)							
		1 Edge sensitive ("pos" or "neg" is GPIO_INT_polarity dependant)							

26.5.10. AXI bus wait cycle setting register (CAXI_BW)

Address	FFF4_2000 + 28h															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		Disp_RV	Wait[3:0]			Disp_W	Wait[3:0]			Draw_R	Wait[3:0]			Draw_W	Wait[3:0]	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Res	erved)				PrimaryAHB_RWait[3:0]				PrimaryAHB_WWait[3:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Function
No.	Name	Function
31-28	Disp_RWait (Read Wait)	Wait time of AXI write (between the transactions) is able to be set in the range of $0_{\rm H}$ (No Wait) - $F_{\rm H}$ (15 cycle Wait.) Initial value is $0_{\rm H}$ (No Wait.)
		(Note) 1 cycle is AXI 1 clock.
27-24	Disp_WWAIT (Write Wait)	Wait time of AXI read (between the transactions) is able to be set in the range of $0_{\rm H}$ (No Wait) - $F_{\rm H}$ (15cycle Wait.) Initial value is $0_{\rm H}$ (No Wait.)
		(Note) 1 cycle is AXI 1 clock.
23-20	Draw_RWAIT (Read Wait)	Wait time of AXI write (between the transactions) is able to be set in the range of $0_{\rm H}$ (No Wait) - $F_{\rm H}$ (15cycle Wait.) Initial value is $0_{\rm H}$ (No Wait.)
10.16	Dama WWAIT	(Note) 1 cycle is AXI 1 clock.
19-16	Draw_WWAIT (Write Wait)	Wait time of AXI read (between the transactions) is able to be set in the range of $0_{\rm H}$ (No Wait) - $F_{\rm H}$ (15cycle Wait.) Initial value is $0_{\rm H}$ (No Wait.)
		(Note) 1 cycle is AXI 1 clock.
15-8	(Reserved)	Reserved bit. Initial value is 0H. Setting other than initial value is prohibited.
7-4	PrimaryAHB_RWA IT (Write Wait)	Wait time of AXI write (between the transactions) is able to be set in the range of $0_{\rm H}$ (No Wait) - $F_{\rm H}$ (15cycle Wait.) Initial value is $0_{\rm H}$ (No Wait.)
		(Note) 1 cycle is AXI 1 clock.
3-0	PrimaryAHB_WW AIT (Read Wait)	Wait time of AXI read (between the transactions) is able to be set in the range of $0_{\rm H}$ (No Wait) - $F_{\rm H}$ (15cycle Wait.) Initial value is $0_{\rm H}$ (No Wait.)
		(Note) 1 cycle is AXI 1 clock.

26.5.11. AXI polarity setting register (CAXI_PS)

This register is to prioritize the bus right on AXI Inter Connect. The priority on the AXI bus is as follows.

```
PSEL_0 > PSEL_1 > PSEL_2 > PSEL_3 > PSEL_4
```

Set bus master identification code 0-4 to each setting bit. 5 or more of value and overlapping value are not available; in this case, register writing is ignored and the previous setting value is kept.

Note:

The PSEL_2 setting bit should be fixed to "010". Setting "010" to PSEL_0, PSEL_1, PSEL_3, and PSEL_4 is prohibited.

Address	FFF4_2000 + 2Ch															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved) P_SEL4														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved) P_SEL3 (Reserved) P_SEL2 (Reserved) P_SEL1 (Reserved)				(Reserved)) P_SEL0										
R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W
Initial value	0	0	1	1	0	0	1	0	0	0	0	1	0	0	0	0

]	Bit field	Function								
No.	Name	Function								
31-19	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".								
18-16	P_SEL4 (Priority Select4)	Priority order of AXI Inter Connect is set.								
		000 DispCap								
		001 AHB								
		010 (Setting prohibited)								
		011 HBUS								
		100 DRAW (initial value)								
		101-111 (Setting prohibited)								
15	(Reserved)	Reserved bit.								
		Write access is ignored. Read value of these bits is always "0".								
14-12	P_SEL3 (Priority Select3)	Priority order of AXI Inter Connect is set.								
		000 DispCap								
		001 AHB								
		010 (Setting prohibited)								
		011 HBUS (initial value)								
		100 DRAW								
		101-111 (Setting prohibited)								
11	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".								

]	Bit field		Function	
No.	Name		Function	
10-8	P_SEL2 (Priority Select2)	Priority order	of AXI Inter Connect is set.	
		000	(Setting prohibited)	
		001	(Setting prohibited)	
		010	This bit field should be fixed to 010 (initial value).	
		011	(Setting prohibited)	
		100	(Setting prohibited)	
		101-111	(Setting prohibited)	
7	(Reserved)	Reserved bit. Write access is	s ignored. Read value of these bits is always "0".	
6-4	P_SEL1 (Priority Select1)		of AXI Inter Connect is set.	
		000	DispCap	
		001	AHB (initial value)	
		010	(Setting prohibited)	
		011	HBUS	
		100	DRAW	
		101-111	(Setting prohibited)	
3	(Reserved)		s ignored. Read value of these bits is always "0".	
2-0	P_SEL0 (Priority Select0)	Priority order	of AXI Inter Connect is set.	
		000	DispCap (initial value)	
		001	АНВ	
		010	(Setting prohibited)	
		011	HBUS	
		100	DRAW	
		101-111	(Setting prohibited	

26.5.12. Multiplex mode setting register (CMUX_MD)

										^ .						
Address							F	FF4_2(000 + 3	0h						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					(Rese	rved)					MPX_N	IODE_4	(Reserved)	MP	X_MODI	E_2
R/W	R	R	R	R	R	R	R	R	R	R	R/W	R/W	R	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1

E	Bit field	Function
No.	Name	Function
31-6	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".
5-4	MPX_MODE_4	External pin's multiplexed group #4 is set.
		00 Mode 0
		01 Mode 1
		10 Reserved
		11 (Initial value)
3	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".
2-0	MPX_MODE_2	External pin's multiplexed group #2 is set.
		000 Mode 0
		001 Mode 1
		010 Mode 2
		011 Mode 3
		100 Mode 4
		101 – 0110 Reserved
		111 (Initial value)

Note:

Be sure to set each group of the pin multiplex to any of the modes after power-on.

26.5.13. External pin status register (CEX_PIN_ST)

Address		FFF4 2000 + 34h														
Audress							Ľ.	FF4_4(JUU T J	711						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		(Reserved)	*1		CRIP	M[3:0]			(Rese	erved)		MPX_N	IODE_5	MPX_MODE_1	
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	Х	Х	Х	Х	Х	0	0	0	0	Х	Х	Х	Х

*1: USB_MODE

	Bit field	Function
No.	Name	Function
31-13	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".
12	USB_MODE	External pin status for USB mode switch is displayed. 0 Mode 0 1 Mode 1
11-8	CRIPM	Status of PLL multiple number setting pin is displayed.
7-4	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".
3-2	MPX_MODE_5	Setting pin status for external pin's multiplexed group #5 is displayed. 00 Mode 0 01 Mode 1 10 Mode 2 11 Mode 0
1-0	MPX_MODE_1	Setting pin status for external pin's multiplexed group #1 is displayed. 00 Mode 0 01 Mode 1 10 Mode 2 11 Mode 0

26.5.14. MediaLB setting register (CMLB)

Address		FFF4_2000 + 38h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								(Reserved)							SEL_SP READ
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

В	it field	Function							
No.	Name	Function							
31-1	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".							
0	SEL_SPREAD	O Case A 1 Case B							

AHB read data output method of MediaLB is switched.

> case(A) Output the	word data.		
			HRDATA
			31-24 23-16 15-8 7-0
BigEndian	Word	0h	Byte0, Byte1, Byte2, Byte3
	Half Word	0h	Byte0, Byte1, Byte2, Byte3
	Half Word	2h	Byte0, Byte1, Byte2, Byte3
	Byte	0h	Byte0, Byte1, Byte2, Byte3
	Byte	1h	Byte0, Byte1, Byte2, Byte3
	Byte	2h	Byte0, Byte1, Byte2, Byte3
	Byte	3h	Byte0, Byte1, Byte2, Byte3
LittleEndian	Word	0h	Byte3, Byte2, Byte1, Byte0
	Half Word	0h	Byte3, Byte2, Byte1, Byte0
	Half Word	2h	Byte3, Byte2, Byte1, Byte0
	Byte	0h	Byte3, Byte2, Byte1, Byte0
	Byte	1h	Byte3, Byte2, Byte1, Byte0
	Byte	2h	Byte3, Byte2, Byte1, Byte0
	Byte	3h	Byte3, Byte2, Byte1, Byte0

> case(B) Output by	filling with va	lid da	ata
			HRDATA
			31-24 23-16 15-8 7-0
BigEndian	Word	0h	Byte0, Byte1, Byte2, Byte3
	Half Word	0h	Byte0, Byte1, Byte0, Byte1
	Half Word	2h	Byte2, Byte3, Byte2, Byte3
	Byte	0h	Byte0, Byte0, Byte0, Byte0
	Byte	1h	Byte1, Byte1, Byte1, Byte1
	Byte	2h	Byte2, Byte2, Byte2, Byte2
	Byte	3h	Byte3, Byte3, Byte3, Byte3
LittleEndian	Word	0h	Byte3, Byte2, Byte1, Byte0
	Half Word	0h	Byte1, Byte0, Byte1, Byte0
	Half Word	2h	Byte3, Byte2, Byte3, Byte2
	Byte	0h	Byte0, Byte0, Byte0, Byte0
	Byte	1h	Byte1, Byte1, Byte1, Byte1
	Byte	2h	Byte2, Byte2, Byte2, Byte2
	Byte	3h	Byte3, Byte3, Byte3, Byte3

26.5.15. USB set register (CUSB)

							-			0.1						
Address		FFF4_2000 + 40h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)														
R/W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					(Reserved)					*1		(Reserved)	*2
R/W	R	R	R	R	R	R	R	R	R	R	R	R/W	R	R	R	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*1: App_prt_ovrcur *2: Sys_interrupt

	Bit field	Function
No.	Name	Function
31-5	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".
4	App_prt_ovrcur	USB Host EHCI Power Control USB 2.0 Host port is disabled, and this is used when overcurrent is detected and others.
		0 Port is enabled
		1 Port is disabled
3-1	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".
0	Sys_interruppt	USB Host System USB 2.0 Host is stopped, and this is used when high order system detects error and others. 0 USB 2.0 Host is in normal operation 1 USB 2.0 Host stops

26.5.16. Byte swap switching register (CBSC)

This register is for byte swap switching and is set as follows.

wSEL	0 (Little)	1 (Big)						
HWSWAP	- (no swap)	0 (Swap)	1 (no swap)					
WSWAP	- (no swap)	0 (Swap)	1 (no swap)					

wSEL: Little/Big switching signal

HWSWAP: Hword byte swap switching signal at big endian

WSWAP: Word byte swap switching signal at big endian

Address		FFF4_2000 + E8h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Reserved)		*1		(Reserved)		*2		(Reserved)	SDMC_Endian[2:0]			(Reserved)	I2S()_Endian[2:0]
R/W	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(Reserved)	I2S1	l_Endian[2:0]	(Reserved)	I2S2	2_Endian[2:0]	(Reserved)	USB_HOST_Endian[2:0]			(Reserved)			
R/W	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*1: IDE_Master_DMA_Endian[2:0]

*2: IDE_Slave_PIO_Endian [2:0]

	Bit field	Eurotion							
No.	Name			Function					
31	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".							
30-28	IDE_Master_ DMA_Endian	Endian sv	Endian switch of IDE66 (Master: DMA) is controlled.						
		Bit 30	wSEL	Endian switch 0:Little, 1:Big					
		Bit 29	HWSAP	Hword byte swap switching signal at Big					
		Bit 27	WSWAP	Word byte swap switching signal at Big					
27	(Reserved)		Reserved bit. Write access is ignored. Read value of these bits is always "0".						
26-24	IDE_Slave_PIO_ Endian	Endian switch of IDE66 (Slave: PIO) is controlled.							
		Bit 26	wSEL	Endian switch 0:Little, 1:Big					
		Bit 25	HWSAP	Hword byte swap switching signal at Big					
		Bit 24	WSWAP	Word byte swap switching signal at Big					
23	(Reserved)	Reserved Write acc		d. Read value of these bits is always "0".					
22-20	SDMC_Endian	Endian sy	witch of SDN	IC is controlled.					
		Bit 22	wSEL	Endian switch 0:Little, 1:Big					
		Bit 21	HWSAP	Hword byte swap switching signal at Big					
		Bit 20	WSWAP	Word byte swap switching signal at Big					
19	(Reserved)	Reserved Write acc		d. Read value of these bits is always "0".					

	Bit field		Function							
No.	Name			Function						
18-16	I2S0_Endian	Endian switch of	of I2S) is controlled.						
		Bit 18 wSEI		Endian switch 0:Little, 1:Big						
		Bit 17 HWS	AP	Hword byte swap switching signal at Big						
		Bit 16 WSW	AP	Word byte swap switching signal at Big						
15	(Reserved)	Reserved bit. Write access is	Reserved bit. Write access is ignored. Read value of these bits is always "0".							
14-12	I2S1_Endian	Endian switch of	of I2S	l is controlled.						
		Bit 14 wSEI		Endian switch 0:Little, 1:Big						
		Bit 13 HWS	AP	Hword byte swap switching signal at Big						
		Bit 12 WSW	/AP	Word byte swap switching signal at Big						
11 10-8	(Reserved) I2S2_Endian	Reserved bit. Write access is Endian switch o	-	ed. Read value of these bits is always "0". 2 is controlled.						
		Bit 10 wSEI	_	Endian switch 0:Little, 1:Big						
		Bit 9 HWS		Hword byte swap switching signal at Big						
		Bit 8 WSW	/AP	Word byte swap switching signal at Big						
7	(Reserved)	Reserved bit. Write access is	ignore	ed. Read value of these bits is always "0".						
6-4	USB_HOST_ Endian	Endian switch of	of USE	3 2.0 Host is controlled.						
		Bit 6 wSEI	_	Endian switch 0:Little, 1:Big						
		Bit 5 HWS	AP	Hword byte swap switching signal at Big						
		Bit 4 WSW	AP	Word byte swap switching signal at Big						
3-2	(Reserved)	Reserved bit. Write access is	ignore	ed. Read value of these bits is always "0".						
1-0	(Reserved)	Reserved bit. Initial value is								

26.5.17. DDR2 controller reset control register (CDCRC)

This register is to output reset to DDR-IF macro in DDR2 controller by writing "0" to each bit. Since register value is output as it is (level output), "1" should be set again to release reset.

Address		FFF4_2000 + ECh														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								(Rese	erved)							
R/W	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							(Rese	rved)							*1	*2
R/W	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*1: IRESET&IUSRRST

*2: IDLLRST

	Bit field	Function							
No.	Name	Function							
31-2	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".							
1	IRESET&IUSRRST	IRESET and IUSRRST to DDR-IF macro in DDR2 controller is controlled. 0 Reset (initial value) 1 Not Reset							
0	IDLLRST	IDLLRST to DDR-IF macro in DDR2 controller is controlled. 0 Reset (initial value) 1 Not Reset							

26.5.18. Software reset register 0 for macro (CMSR0)

Address		FFF4_2000 + F0h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		(Reserved)						RST0_25 SRST0_24 (Reserved) SRST0						SRST0_16		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				(Rese	erved)				SRST0_7	(Reserved)	SRST0_5	SRST0_4	SRST0_3	SRST0_2	SRST0_1	SRST0_0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit field	Function							
No.	Name	Function							
31-26	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".							
25	SRST0_25 (UART1 Software reset)	Reset is output to UART1 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (Initial value) 1 Software reset							
24	SRST0_24 (UART0 Software reset)	Reset is output to UART0 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (Initial value) 1 Software reset							
23-17	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".							
16	SRST0_16 (DMAC Software reset)	Reset is output to DMAC macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (Initial value) 1 Software reset							
15-8	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".							
7	SRST0_7 (GPIO Software reset)	Reset is output to GPIO macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (Initial value) 1 Software reset							
6-5	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".							
4	SRST0_4 (GDC DISP1 Software reset)	Reset is output to GDC DISP1 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (Initial value) 1 Software reset							

FUJITSU

	Bit field	Function						
No.	Name	Function						
3	SRST0_3 (GDC DISP0 Software reset)	Reset is output to GDC DISP0 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (Initial value) 1 Software reset						
2	SRST0_2 (GDC CAP1 Software reset)	Reset is output to GDC CAP1 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (Initial value) 1 Software reset						
1	SRST0_1 (GDC CAP0 Software reset)	Reset is output to GDC CAP0 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (Initial value) 1 Software reset						
0	SRST0_0 (GDC Draw Software reset)	Reset is output to GDC Draw macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (Initial value) 1 Software reset						

26.5.19. Software reset register 1 for macro (CMSR1)

Address		FFF4_2000 + F4h														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	(Rese	erved)	SRST1_29	SRST1_28	SRST1_27	SRST1_26	SRST1_25	SRST0_24	SRST1_23	SRST1_22	SRST1_21	SRST1_20	SRST1_19	SRST1_18	SRST1_17	SRST1_16
R/W	R	R	R	R/W												
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	SRST1_15	SRST1_14	SRST1_13	SRST1_12	SRST1_11	SRST1_10	SRST1_9	SRST1_8	SRST1_7	SRST1_6	SRST1_5	SRST1_4	SRST1_3	SRST1_2	SRST1_1	SRST1_0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

r.	Bit field	Evention
No.	Name	Function
31-30	(Reserved)	Reserved bit. Write access is ignored. Read value of these bits is always "0".
29	SRST1_29 (MediaLB Software reset)	Reset is output to MediaLB macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.
		0 No software reset (initial value) 1 Software reset
28	SRST1_28 (HBUS2AXI Software reset)	Reset is output to HBUS2AXI macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.
		0 No software reset (initial value) 1 Software reset
27	SRST1_27 (MBUS2AXI(Draw) Software reset)	Reset is output to MBUS2AXI (Draw) macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.
		0 No software reset (initial value) 1 Software reset
26	SRST1_26 (MBUS2AXI(Disp) Software reset)	Reset is output to MBUS2AXI (Disp) macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.
		0 No software reset (initial value) 1 Software reset
25	SRST1_25 (AHB2AXI(CPUro ot) Software reset)	Reset is output to AHB2AXI (CPUroot) macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.
		0 No software reset (initial value) 1 Software reset
24	SRST1_24 (AHB2AXI(AHBB us) Software reset)	Reset is output to AHB2AXI (AHB Bus) macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.
		0 No software reset (initial value) 1 Software reset

FUJITSU

	Bit field	Function
No.	Name	Function
23	SRST1_23 (USB 2.0 Function DMAC Software reset)	Reset is output to USB 2.0 Function DMAC macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (initial value) 1 Software reset
22	SRST1_22 (USB 2.0 Function Software reset)	Reset is output to USB 2.0 Function macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (initial value) 1 Software reset
21	SRST1_21 (USB 1.1 OHCI Host Software reset)	Reset is output to USB 1.1 OHCI Host macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (initial value) 1 Software reset
20	SRST1_20 (USB 2.0 EHCI Host Software reset)	Reset is output to USB 2.0 EHCI Host macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (initial value) 1 Software reset
19	SRST1_19 (USB 2.0 Host PHYCNT Software reset)	Reset is output to USB 2.0 Host PHYCNT macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (initial value) 1 Software reset
18	SRST1_18 (UART5 Software reset)	Reset is output to UART5 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (initial value) 1 Software reset
17	SRST1_17 (UART4 Software reset)	Reset is output to UART4 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (Initial value) 1 Software reset
16	SRST1_16 (UART3 Software reset)	Reset is output to UART3 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset. 0 No software reset (initial value) 1 Software reset

	Bit field	Function							
No.	Name	Function							
15	SRST1_15 (UART2 Software reset)	Reset is output to UART2 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.							
		0 No software reset (initial value)							
		1 Software reset							
14	SRST1_14 (PWM_1 Software reset)	Reset is output to PWM_1 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.							
		0 No software reset (Initial value)							
		1 Software reset							
13	SRST1_13 (PWM_0 Software reset)	Reset is output to PWM_0 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.							
		0 No software reset (initial value)							
		1 Software reset							
12	SRST1_12 (I2C_0	Reset is output to I2C_0 macro by writing "1" to this bit.							
	Software reset)	Since register value is output as it is (level output), "0" should be set again to release reset.							
		0 No software reset (initial value)							
		1 Software reset							
11	SRST1_11 (I2C_0 Software reset)	Reset is output to I2C_0 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.							
		0 No software reset (Initial value)							
		1 Software reset							
10	SRST1_10 (IDE66	Reset is output to IDE66 macro by writing "1" to this bit.							
10	Software reset)	Since register value is output as it is (level output), "0" should be set again to release reset.							
		0 No software reset (initial value)							
		1 Software reset							
9	SRST1_9 (SPI	Reset is output to SPI macro by writing "1" to this bit.							
,	Software reset)	Since register value is output as it is (level output), "0" should be set again to release reset.							
		0 No software reset (Initial value)							
		1 Software reset							
8	SRST1_8 (I2S_2 Software reset)	Reset is output to I2S_2 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.							
		0 No software reset (initial value)							
		1 Software reset							

	Bit field	Function				
No.	Name	Function				
7	SRST1_7 (I2S_1 Software reset)	Reset is output to I2S_1 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.				
		0 No software reset (initial value) 1 Software reset				
6	SRST1_6 (I2S_0 Software reset)	Reset is output to I2S_0 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.				
		0 No software reset (Initial value) 1 Software reset				
5	SRST1_5 (MBUS2AXI(Cap))	Reset is output to MBUS2AXI (Cap) macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.				
		1 Software reset				
4	SRST1_4 (SDMC Software reset)	Reset is output to SDMC macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.				
		0 No software reset (initial value) 1 Software reset				
3	SRST1_3 (CAN1 Software reset)	Reset is output to CAN1macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.				
		0 No software reset (initial value) 1 Software reset				
2	SRST1_2 (CAN0 Software reset)	Reset is output to CAN0 macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.				
		0 No software reset (initial value) 1 Software reset				
1	SRST1_1 (DDR2 Software reset)	Reset is output to DDR2 controller macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.				
		0 No software reset (initial value) 1 Software reset				
0	SRST1_0 (GDC Software reset)	Reset is output to GDC macro by writing "1" to this bit. Since register value is output as it is (level output), "0" should be set again to release reset.				
		0 No software reset (initial value) 1 Software reset				

27. External interrupt controller (EXIRC)

This chapter describes function and operation of external interrupt controller (EXIRC.)

27.1. Outline

EXIRC is block to control external interrupt as well as external interrupt request input to external pin of INT_A[3] ~ INT_A [0]. "H" level, "L" level, rising edge, and falling edge are selectable as detected input request level.

27.2. Feature

EXIRC has following features:

- Operating as bus slave of AMBA (APB)
- 4 channels of external interrupt control
- 4 input request level selections
 - "H" level
 - "L" level
 - Rising edge
 - Falling edge
- Utilization of external interrupt as returning factor from Stop mode

27.3. Block diagram

Figure 27-1 shows block diagram of EXIRC.

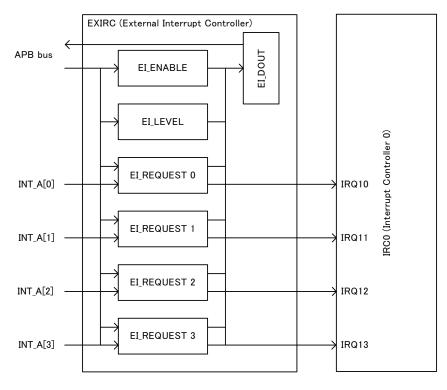


Figure 27-1 Block diagram of EXIRC

Table 27-1 shows block function included in EXIRC.

 Table 27-1
 Block function included in EXIRC

Block	Function
EI_ENABLE	Enabling external interrupt request for interrupt controller (IRC0)
EI_LEVEL	Setting input request level: "H" level/"L" level/rising edge/falling edge
EI_REQUEST	Synchronizing and maintaining interrupt request
EI_DOUT	Generating data for reading

27.4. Supply clock

APB clock is supplied to EXIRC. Refer to "5. Clock reset generator (CRG)" for frequency setting and control specification of the clock.

27.5. Register

This section describes EXIRC register.

27.5.1. Register list

Table 27-2 shows EXIRC register list.

Addres	s	Register	Abbreviation	Description					
Base	Offset	Kegistei	Abbreviation	Description					
FFFE_4000 _H	+ 00 _H	External interrupt enable register	EIENB	Enable control of external interrupt request output					
	$+04_{\mathrm{H}}$	External interrupt request register	-	Clear function of external interrupt display and interrupt request					
	+ 08 _H	External interrupt level register		Selection of input request level detection of external interrupt					

Description format of register

Following format is used for description of register's each bit in "27.5.2 External interrupt enable register (EIENB)" to "27.5.4 External interrupt level register (EILVL)".

Address		Base address + Offset														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
R/W																
Initial value																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
R/W																
Initial value																

Meaning of item and sign

Address

Address (base address + offset address) of the register

Bit

Bit number of the register

Name

Bit field name of the register

R/W

Attribution of read/write of each bit field

- R0:Read value is always "0"
- R1: Read value is always "1"
- W0: Write value is always "0", and write access of "1" is ignored
- W1: Write value is always "1", and write access of "0" is ignored
- R: Read
- W: Write

Initial value

Each bit field's value after reset

- 0: Value is "0"
- 1: Value is "1"
- X: Value is undefined

27.5.2. External interrupt enable register (EIENB)

Address		$FFFE_4000_H + 00_H$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	_	-	1	-	-	-	-	_	-	-	-	1	-	-	_	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	_	_	_	-	-	-	-	_	-	-	-	-	ENB3	ENB2	ENB1	ENB0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R0	R0	R0	R0	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0

This register is to control masking external interrupt request output.

	Bit field	Description
No.	Name	Description
31-8	_	Unused bit. Write access is ignored. Read value of these bits is undefined.
7-4	_	Unused bit. Write access is ignored. Read value of these bits is always "0".
3-0	ENB3-0	Masking external interrupt request output is controlled. 0 External interrupt request is disabled 1 External interrupt request is enabled. The interrupt request output corresponding to the bit written "1" is permitted (ENB0 controls INT_A[0] permission), and the request is output to interrupt controller (IRC0.) Although the pin corresponding to the bit written "0" maintains interrupt factor, interrupt is not requested to the controller. These bits are initialized to "0000 _B " by reset.

27.5.3. External interrupt request register (EIREQ)

Address		$FFFE_4000_H + 04_H$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-	-	1	-	1	-	-	-	1	-	-	1	-	_	_	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-	-	_	-	-	-	-	-	_	-	-	-	REQ3	REQ2	REQ1	REQ0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R0	R0	R0	R0	R /W0	R /W0	R /W0	R /W0
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0

This register is to indicate and clear external interrupt request.

	Bit field	Description
No.	Name	- Description
31-8	_	Unused bit. Write access is ignored. Read value of these bits is undefined.
7-4	_	Unused bit. Write access is ignored. Read value of these bits is always "0".
3-0	REQ3-0	External interrupt request is indicated and cleared. 0 At reading: There is no external interrupt request At writing: External interrupt request is cleared 1 At reading: There is external interrupt request At writing: External interrupt request invalid Read value of "1" shows external interrupt is requested. These bits correspond to external interrupt channel as follows. REQ0: External interrupt 0 (INT_A[0] pin) REQ1: External interrupt 1 (INT_A[1] pin) REQ2: External interrupt 2 (INT_A[2] pin) REQ3: External interrupt 3 (INT_A[3] pin) When "0" is written to these bits, external interrupt request is cleared. Writing "1" is invalid. These bits are initialized to "0000 _B " by reset.

27.5.4. External interrupt level register (EILVL)

This register is to select input request level detection.

Address		$\mathbf{FFFE}_{4000_{\mathbf{H}}} + 08_{\mathbf{H}}$														
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	1	-	-	-	-	-	-	1	-	-	-	-	-	1	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	_	-	-	-	-	-	-	-	LVL3[1]	LVL3[0]	LVL2[1]	LVL2[0]	LVL1[1]	LVL1[0]	LVL0[1]	LVL0[0]
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial value	Х	Х	Х	Х	Х	Х	Х	Х	0	1	0	1	0	1	0	1

	Bit field			Description
No.	Name			Description
31-8	_	Unused bit. Write access is i	ignored. Rea	d value of these bits is undefined.
7-0	LVL3[1:0] - LVL0[1:0]	2 bit is allocated • LVL0[1:0]: E • LVL1[1:0]: E • LVL2[1:0]: E	l to each exter External interre External interre External interre	f external interrupt is selected. nal interrupt channel. This is initialized to "01 _B " by reset. upt 0 (INT_A[0] pin) upt 1 (INT_A[1] pin) upt 2 (INT_A[2] pin) upt 3 (INT_A[3] pin)
		LVL3-0[1]	LVL3-0[0]	Input request level
		0	0	"L" Level
		0	1	"H" Level
		1	0	Rising edge
		1	1	Falling edge

27.6. Operation

External interrupt controller issues request signal to interrupt controller (IRC0) when input request level of external interrupt is input to corresponding channel after setting EIENB and EILVL registers.

If interrupt from this module is higher than interrupt level set in ILM register and it is highest priority as a result of interrupt prioritization occurred in IRQ level decision circuit, IRQ interrupt request is issued to ARM core.

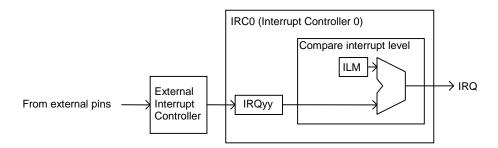


Figure 27-2 Operation of external interrupt

27.7. Operation procedure

External interrupt register setting procedure is as followings.

- 1. Disable EIENB register related bit
- 2. Set EILVL register related bit
- 3. Clear EIREQ register related bit
- 4. Enable EIENB register related bit

EIENB register must be disabled to set register in the module; moreover, EIREQ register needs to be cleared before EIENB register is enabled. This operation is to prevent accident caused by incidental interrupt source during register setting.

27.8. Instruction for use

This section indicates notice for using external interrupt.

Notice for returning from Stop mode

When external interrupt is used to return from Stop mode, where clock is stopped, set input request level to "H" since "L" level request may cause malfunction. Moreover, the edge request is not able to return from the Stop mode.

28. SD memory controller (SDMC)

Only SD card licensee is disclosed.

